Show simple item record

dc.contributor.authorWu, T.
dc.contributor.authorZhang, Xinguang
dc.contributor.authorLu, Y.
dc.date.accessioned2017-01-30T15:31:08Z
dc.date.available2017-01-30T15:31:08Z
dc.date.created2014-11-19T01:13:46Z
dc.date.issued2012
dc.identifier.citationWu, T. and Zhang, X. and Lu, Y. 2012. Solutions of Sign-Changing Fractional Differential Equation with the Fractional Derivatives. Abstract and Applied Analysis. 2012.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/47089
dc.description.abstract

We study the singular fractional-order boundary-value problem with a sign-changing nonlinear term -??????(??)=??(??)??(??,??(??),????1??(??),????2??(??),…,??????-1??(??)),0<??<1,????????(0)=0,1=??=??-1,??????-1+1??(0)=0, ??????-1???(1)=??-2??=1??????????-1??(????), where ??-1<??=??, ???N and ??=3 with 0<??1<??2<?<????-2<????-1 and ??-3<????-1<??-2, ?????R,0<??1<??2<?<????-2<1 satisfying ?0<??-2??=1????????-????-1??-1<1, ???? is the standard Riemann-Liouville derivative, ??:[0,1]×R???R is a sign-changing continuous function and may be unbounded from below with respect to ????, and ??:(0,1)?[0,8) is continuous. Some new results on the existence of nontrivial solutions for the above problem are obtained by computing the topological degree of a completely continuous field.

dc.publisherHindawi Publishing Corporation
dc.relation.urihttp://www.hindawi.com/journals/aaa/2012/797398/
dc.titleSolutions of Sign-Changing Fractional Differential Equation with the Fractional Derivatives
dc.typeJournal Article
dcterms.source.volume2012
dcterms.source.issn1085-3375
dcterms.source.titleAbstract and Applied Analysis
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record