Stochastic mirror descent method for distributed multi-agent optimization
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2016 Springer-Verlag Berlin HeidelbergThis paper considers a distributed optimization problem encountered in a time-varying multi-agent network, where each agent has local access to its convex objective function, and cooperatively minimizes a sum of convex objective functions of the agents over the network. Based on the mirror descent method, we develop a distributed algorithm by utilizing the subgradient information with stochastic errors. We firstly analyze the effects of stochastic errors on the convergence of the algorithm and then provide an explicit bound on the convergence rate as a function of the error bound and number of iterations. Our results show that the algorithm asymptotically converges to the optimal value of the problem within an error level, when there are stochastic errors in the subgradient evaluations. The proposed algorithm can be viewed as a generalization of the distributed subgradient projection methods since it utilizes more general Bregman divergence instead of the Euclidean squared distance. Finally, some simulation results on a regularized hinge regression problem are presented to illustrate the effectiveness of the algorithm.
Related items
Showing items related by title, author, creator and subject.
-
Grafarend, E.; Awange, Joseph (2012)Here we present a nearly complete treatment of the Grand Universe of linear and weakly nonlinear regression models within the first 8 chapters. Our point of view is both an algebraic view as well as a stochastic one. For ...
-
Ye, Mengbin ; Anderson, B.D.O.; Yu, C. (2019)In this paper, we propose a discontinuous distributed model-independent algorithm for a directed network of Euler-Lagrange agents to track the trajectory of a leader with nonconstant velocity. We initially study a fixed ...
-
Liu, Q.; Ye, Mengbin ; Qin, J.; Yu, C. (2019)This paper proposes three different distributed event-triggered control algorithms to achieve leader-follower consensus for a network of Euler-Lagrange agents. We first propose two model-independent algorithms for a ...