Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Plateau Rayleigh Instability Simulation

    Access Status
    Fulltext not available
    Authors
    Mead-Hunter, Ryan
    King, Andrew
    Mullins, Benjamin
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Mead-Hunter, Ryan and King, Andrew and Mullins, Benjamin. 2012. Plateau Rayleigh Instability Simulation. Langmuir. 28 (17): pp. 6731-6735.
    Source Title
    American Chemical Society
    DOI
    10.1021/la300622h
    ISSN
    0002-7863
    URI
    http://hdl.handle.net/20.500.11937/47197
    Collection
    • Curtin Research Publications
    Abstract

    The well-known phenomena of Plateau–Rayleigh instability has been simulated using computational fluid dynamics (CFD). The breakup of a liquid film into an array of droplets on a cylindrical element was simulated using a volume-of-fluid (VOF) solver and compared to experimental observations and existing theory. It is demonstrated that the VOF method can correctly predict the breakup of thins films into an array of either axisymmetric droplets or clam-shell droplets, depending on the surface energy. The existence of unrealistically large films is precluded. Droplet spacing was found to show reasonable agreement with theory. Droplet motion and displacement under fluid flow was also examined and compared to that in previous studies. It was found that the presence of air flow around the droplet does not influence the stable film thickness; however, it reduces the time required for droplet formation. Novel relationships for droplet displacement were derived from the results.

    Related items

    Showing items related by title, author, creator and subject.

    • Evaporation of a droplet on a heated spherical particle
      Gumulya, Monica; Utikar, Ranjeet; Pareek, Vishnu; Mead-Hunter, Ryan; Mitra, S.; Evans, G. (2015)
      © 2014 Elsevier B.V. A three-dimensional, CLSVOF-based numerical model was developed to study the hydrodynamics of water droplets of various diameters impacting a heated solid particle. The temperature of the particle was ...
    • An experimental investigation into the spread and heat transfer dynamics of a train of two concentric impinging droplets over a heated surface
      Guggilla, G.; Narayanaswamy, Ramesh ; Pattamatta, A. (2020)
      Extensive studies of two concentric droplets consecutively impinging over a thin heated foil surface are carried out to compare the spread and heat transfer dynamics of a single drop, and drop-on-drop configurations using ...
    • Development and Validation of a Computational Fluid Dynamics (CFD) Solver for Droplet-Fibre Systems
      Mead-Hunter, Ryan; Mullins, Benjamin; King, Andrew (2011)
      Droplet-fibre interactions are found in many natural and anthropogenic systems. A common industrial example is fibrous filtration - used to capture liquid (e.g. oil) mists. The filters used consist mostly of highly porous ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.