Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Optimal Single-Walled Carbon Nanotube Vessels for Short-Term Reversible Storage of Carbon Dioxide at Ambient Temperatures

    Access Status
    Fulltext not available
    Authors
    Kowalczyk, Piotr
    Furmaniak, S.
    Gauden, P.
    Terzyk, A.
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kowalczyk, Piotr and Furmaniak, Sylwester and Gauden, Piotr A. and Terzyk, Artur P. 2010. Optimal Single-Walled Carbon Nanotube Vessels for Short-Term Reversible Storage of Carbon Dioxide at Ambient Temperatures. Journal of Physical Chemistry. 114 (49): pp. 21465-21473.
    Source Title
    Journal of Physical Chemistry
    DOI
    10.1021/jp106547j
    ISSN
    0022-3654
    School
    Nanochemistry Research Institute (Research Institute)
    URI
    http://hdl.handle.net/20.500.11937/47287
    Collection
    • Curtin Research Publications
    Abstract

    Optimized light vessels composed of single-walled carbon nanotubes have high gravimetric and volumetric capacity for short-term reversible storage of CO2 at 298 K and near-ambient operating pressures. We use grand canonical Monte Carlo simulation for modeling of CO2 adsorption at 298 K and pressures up to 5.7 MPa. It is shown that both gravimetric and volumetric uptake of CO2 strongly depend on the pore size in nanotubes but not on their chiral vector. Moreover, for any operating storage pressure, a unique optimal size of carbon nanotubes is well-defined. At 1.5 MPa, the most efficient nanotubes that maximize both gravimetric and volumetric uptake of CO2 (i.e., 13.6 mmol g-1 and 11.4 mol dm-3) have diameters of 3.8 nm. This size corresponds to the (28,28) armchair nanotubes.We demonstrate that to make an objective statement about the efficiency of CO2 storage in any nanoporous material, the complete volumetric and gravimetric adsorption data are necessary. Taking this into account, we discuss the recently reported exceptionally high capacity of metal-organic frameworks. We show that MOF-177, known as the most efficient porous material for storage of CO2 at room temperature, is characterized by very high gravimetric uptake of CO2 (i.e., 21.8 mmol g-1 at 1.5 MPa and 33.5 mmol g-1 at 3.5 MPa). However, the reported volumetric density of CO2 adsorbed in MOF-177 at 298 K (i.e., 8.17 mol dm-3 at 1.5 MPa and 12.26 mol dm-3 at 3.5 MPa) is lower in comparison to storage vessels composed of optimized single-walled carbon nanotubes. Our systematic study of CO2 adsorption in bundles composed of singe-walled carbon nanotubes at 298 K indicates the potential of nanotubes for innovation in clean technologies.

    Related items

    Showing items related by title, author, creator and subject.

    • Efficient Adsorption of Super Greenhouse Gas (Tetrafluoromethane) in Carbon Nanotubes
      Kowalczyk, Poitr; Holyst, R. (2008)
      Light membranes composed of single-walled carbon nanotubes(SWNTs) can serve as efficient nanoscale vessels forencapsulation of tetrafluoromethane at 300 K and operatingexternal pressure of 1 bar. We use grand canonical ...
    • Grand Canonical Monte Carlo Simulation Study of Hydrogen Storage in Ordered Mesoporous Carbons at 303 K
      Kowalczyk, Poitr; Jaroniec, M.; Solarz, L.; Terzyk, A.; Gauden, P. (2006)
      ABSTRACT: Results of Grand Canonical Monte Carlo (GCMC) simulations of hydrogen storage at 303 K in ordered mesoporous carbons (OMCs) which are inverse replicas of cubic Im3 — m silica are presented. Of the ones ...
    • Hydrogen storage in nanoporous carbon materials: myth and facts
      Kowalczyk, Poitr; Holyst, R.; Terrones, M.; Terrones, H. (2007)
      We used Grand canonical Monte Carlo simulation to model the hydrogen storage in the primitive, gyroid, diamond, and quasi-periodic icosahedral nanoporous carbon materials and in carbon nanotubes. We found that none of ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.