Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Novel phosphorus doped carbon nitride modified TiO2 nanotube arrays with improved photoelectrochemical performance

    Access Status
    Fulltext not available
    Authors
    Su, J.
    Geng, P.
    Li, Xin Yong
    Zhao, Q.
    Quan, X.
    Chen, G.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Su, J. and Geng, P. and Li, X.Y. and Zhao, Q. and Quan, X. and Chen, G. 2015. Novel phosphorus doped carbon nitride modified TiO2 nanotube arrays with improved photoelectrochemical performance. Nanoscale. 7 (39): pp. 16282-16289.
    Source Title
    Nanoscale
    DOI
    10.1039/c5nr04562b
    ISSN
    2040-3364
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/47390
    Collection
    • Curtin Research Publications
    Abstract

    This journal is © The Royal Society of Chemistry. Novel phosphorus-doped graphitic-carbon nitride (P-C3N4) modified vertically aligned TiO2 nanotube arrays (NTs) were designed and synthesized. They can significantly enhance the conduction and utilization of photogenerated charge carriers of TiO2 NTs. The heterostructure was successfully fabricated through a three-step process: electrochemical anodization and wet-dipping followed by thermal polymerization. The prepared P-C3N4/TiO2 NTs exhibit enhanced light-absorption characteristics and improved charge separation and transfer ability, thus resulting in a 3-fold photocurrent (1.98 mA cm-2 at 0 V vs. Ag/AgCl) compared with that of pure TiO2 NTs (0.66 mA cm-2 at 0 V vs. Ag/AgCl) in 1 M NaOH solution. The prepared P-C3N4/TiO2 NT photoelectrodes also present excellent photocatalytic and photoelectrocatalytic capabilities in the degradation of methylene blue (MB). The kinetic rate of P-C3N4/TiO2 NTs in the photoelectrocatalytic process for MB is 2.7 times that of pristine TiO2 NTs. Furthermore, the prepared sample was used as a photoanode for solar-driven water splitting, giving a H2 evolution rate of 36.6 µmol h-1 cm-2 at 1.0 V vs. RHE under simulated solar light illumination. This novel structure with a rational design for a visible light response shows potential for metal free materials in photoelectrochemical applications.

    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.