Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Analysis of high resolution X-ray CT images of Bentheim Sandstone under elevated confining pressures

    Access Status
    Fulltext not available
    Authors
    Saenger, E.
    Lebedev
    Uribe, D.
    Osorno, M.
    Vialle, Stephanie
    Duda, M.
    Steeb, H.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Saenger, E. and Lebedev and Uribe, D. and Osorno, M. and Vialle, S. and Duda, M. and Steeb, H. 2016. Analysis of high resolution X-ray CT images of Bentheim Sandstone under elevated confining pressures. Geophysical Prospecting. 64 (4): pp. 848-859.
    Source Title
    Geophysical Prospecting
    DOI
    10.1111/1365-2478.12400
    ISSN
    1365-2478
    School
    Department of Exploration Geophysics
    URI
    http://hdl.handle.net/20.500.11937/47465
    Collection
    • Curtin Research Publications
    Abstract

    A sample of Bentheim sandstone was characterized using high-resolution three-dimensional X-ray microscopy at two different confining pressures of 1 MPa and 20 MPa. The two recordings can be directly compared with each other because the same sample volume was imaged in either case. After image processing, a porosity reduction from 21.92% to 21.76% can be deduced from the segmented data. With voxel-based numerical simulation techniques, we determined apparent hydraulic transport properties and effective elastic properties. These results were compared with laboratory measurements using reference samples. Laboratory and computed volumes, as well as hydraulic transport properties, agree fairly well. To achieve a reasonable agreement for the effective elastic properties, we define pressure-dependent grain contact zones in addition to mineral phases in the digital rock images. From that, we derive a specific digital rock physics template resulting in a very good agreement between laboratory data and simulations. The digital rock physics template aims to contribute to a more standardized approach of X-ray computed tomography data analysis as a tool to determine and predict elastic rock properties.

    Related items

    Showing items related by title, author, creator and subject.

    • Feasibility of rock characterization for mineral exploration using seismic data
      Harrison, Christopher Bernard (2009)
      The use of seismic methods in hard rock environments in Western Australia for mineral exploration is a new and burgeoning technology. Traditionally, mineral exploration has relied upon potential field methods and surface ...
    • Theoretical and numerical modelling of the effect of viscous and viscoelastic fluids on elastic properties of saturated rocks
      Makarynska, Dina (2010)
      Rock physics is an essential link connecting seismic data to the properties of rocks and fluids in the subsurface. One of the most fundamental questions of rock physics is how to model the effects of pore fluids on rock ...
    • Investigation of pressure and saturation effects on elastic parameters: an integrated approach to improve time-lapse interpretation
      Grochau, Marcos Hexsel (2009)
      Time-lapse seismic is a modern technology for monitoring production-induced changes in and around a hydrocarbon reservoir. Time-lapse (4D) seismic may help locate undrained areas, monitor pore fluid changes and identify ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.