Composition, age, and origin of the ~620 Ma Humr Akarim and Humrat Mukbid A-type granites: no evidence for pre-Neoproterozoic basement in the Eastern Desert, Egypt
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
The Humr Akarim and Humrat Mukbid plutons, in the central Eastern Desert of Egypt, are late Neoproterozoic post-collisional alkaline A-type granites. Humr Akarim and Humrat Mukbid plutonic rocks consist of subsolvus alkali granites and a subordinate roof facies of albite granite, which hosts greisen and Sn–Mo-mineralized quartz veins; textural and field evidence strongly suggest the presence of late magmatic F-rich fluids. The granites are Si-alkali rich, Mg–Ca–Ti poor with high Rb/Sr (20–123), and low K/Rb (27–65). They are enriched in high field strength elements (e.g., Nb, Ta, Zr, Y, U, Th) and heavy rare earth elements (Lan/Ybn = 0.27–0.95) and exhibit significant tetrad effects in REE patterns. These geochemical attributes indicate that granite trace element distribution was controlled by crystal fractionation as well as interaction with fluorine-rich magmatic fluids. U–Pb SHRIMP zircon dating indicates an age of ~630–620 Ma but with abundant evidence that zircons were affected by late corrosive fluids (e.g., discordance, high common Pb). eNd at 620 Ma ranges from +3.4 to +6.8 (mean = +5.0) for Humr Akarim granitic rocks and from +4.8 to +7.5(mean = +5.8) for Humrat Mukbid granitic rocks. Some slightly older zircons (~740 Ma, 703 Ma) may have been inherited from older granites in the region. Our U–Pb zircon data and Nd isotope results indicate a juvenile magma source of Neoproterozoic age like that responsible for forming most other ANS crust and refute previous conclusions that pre-Neoproterozoic continental crust was involved in the generation of the studied granites.
Related items
Showing items related by title, author, creator and subject.
-
Oliveira, E.; Bueno, J.; McNaughton, Neal; Silva Filho, A.; Nascimento, R.; Donatti-Filho, J. (2015)The Sergipano belt is the outcome of collision between the Pernambuco-Alagoas Domain (Massif) and the São Francisco Craton during Neoproterozoic assembly of West Gondwana. Although the understanding of the Sergipano belt ...
-
Zhou, M.; Yan, D.; Kennedy, Allen; Li, Y.; Ding, J. (2002)The magmatic and tectonic history of the Yangtze Block and its possible affinity with other Neoproterozoic arc terranes are important in the reconstruction of Neoproterozoic plate tectonics. In the Panxi Belt, adjacent ...
-
Dan, W.; Li, X.; Wang, Qiang; Wang, Xuan-Ce; Liu, Y. (2014)The Alxa Block in northern China has been traditionally considered as the westernmost part of the Archean North China Craton (NCC). However, recent studies revealed that there are few Archean rocks exposed in the Alxa ...