Show simple item record

dc.contributor.authorLongmore, S.
dc.contributor.authorRathborne, J.
dc.contributor.authorBastian, N.
dc.contributor.authorAlves, J.
dc.contributor.authorAscenso, J.
dc.contributor.authorBally, J.
dc.contributor.authorTesti, L.
dc.contributor.authorLongmore, A.
dc.contributor.authorBattersby, C.
dc.contributor.authorBressert, E.
dc.contributor.authorPurcell, C.
dc.contributor.authorWalsh, Andrew
dc.contributor.authorJackson, J.
dc.contributor.authorFoster, J.
dc.contributor.authorMolinari, S.
dc.contributor.authorMeingast, S.
dc.contributor.authorAmorim, A.
dc.contributor.authorLima, J.
dc.contributor.authorMarques, R.
dc.contributor.authorMoitinho, A.
dc.contributor.authorPinhao, J.
dc.contributor.authorRebordao, J.
dc.contributor.authorSantos, F.
dc.identifier.citationLongmore, S. and Rathborne, J. and Bastian, N. and Alves, J. and Ascenso, J. and Bally, J. and Testi, L. et al. 2012. G0.253 + 0.016: A molecular cloud progenitor of an Arches-like cluster. The Astrophysical Journal. 746.

Young massive clusters (YMCs) with stellar masses of 104–105M and core stellar densities of 104–105 stars per cubic pc are thought to be the “missing link” between open clusters and extreme extragalactic super star clusters and globular clusters. As such, studying the initial conditions of YMCs offers an opportunity to test cluster formation models across the full clustermass range. G0.253 + 0.016 is an excellent candidateYMCprogenitor.We make use of existing multi-wavelength data including recently available far-IR continuum (Herschel/Herschel Infrared Galactic Plane Survey) and mm spectral line (H2O Southern Galactic Plane Survey and Millimetre Astronomy Legacy Team90 GHz Survey) data and present new, deep, multiple-filter, near-IR (Very Large Telescope/NACO) observations to study G0.253 + 0.016. These data show that G0.253 + 0.016 is a high-mass (1.3 × 105M), low-temperature (Tdust ~ 20 K), high-volume, and column density (n ~ 8 × 104 cm-3; NH2~ 4 × 1023 cm-2) molecular clump which is close to virial equilibrium (Mdust ~ Mvirial) so is likely to be gravitationally bound. It is almost devoid of star formation and, thus, has exactly the properties expected for the initial conditions of a clump that may form an Arches-like massive cluster. We compare the properties of G0.253 + 0.016 to typical Galactic cluster-forming molecular clumps and find it is extreme, and possibly unique in the Galaxy. This uniqueness makes detailed studies of G0.253 + 0.016 extremely important for testing massive cluster formation models.

dc.publisherInstitute of Physics Publishing
dc.subjectGalaxy: center
dc.subjectopen clusters and associations: general
dc.subjectstars: protostars
dc.subjectstars: massive -
dc.subjectstars: formation
dc.titleG0.253 + 0.016: A molecular cloud progenitor of an Arches-like cluster
dc.typeJournal Article
dcterms.source.titleThe Astrophysical Journal
curtin.accessStatusFulltext not available

Files in this item


This item appears in the following Collection(s)

Show simple item record