Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    An atomic force microscopy study of calcite dissolution in saline solutions: The role of magnesium ions

    Access Status
    Fulltext not available
    Authors
    Ruiz-Agudo, E.
    Putnis, Christine
    Jiménez-López, C.
    Rodriguez-Navarro, C.
    Date
    2009
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ruiz-Agudo, E. and Putnis, C. and Jiménez-López, C. and Rodriguez-Navarro, C. 2009. An atomic force microscopy study of calcite dissolution in saline solutions: The role of magnesium ions. Geochimica Et Cosmochimica Acta. 73 (11): pp. 3201-3217.
    Source Title
    Geochimica Et Cosmochimica Acta
    DOI
    10.1016/j.gca.2009.03.016
    ISSN
    0016-7037
    School
    Department of Chemistry
    URI
    http://hdl.handle.net/20.500.11937/47603
    Collection
    • Curtin Research Publications
    Abstract

    In situ Atomic Force Microscopy, AFM, experiments have been carried out using calcite cleavage surfaces in contact with solutions of MgSO4, MgCl2, Na2SO4 and NaCl in order to attempt to understand the role of Mg2+ during calcite dissolution. Although previous work has indicated that magnesium inhibits calcite dissolution, quantitative AFM analyses show that despite the fact that Mg2+ inhibits etch pit spreading, it increases the density and depth of etch pits nucleated on calcite surfaces and, subsequently, the overall dissolution rates: i.e., from 10-11.75 mol cm-2 s-1 (in deionized water) up to 10-10.54 mol cm-2 s-1 (in 2.8 M MgSO4). Such an effect is concentration-dependent and it is most evident in concentrated solutions ([Mg2+] >> 50 mM). These results show that common soluble salts (especially Mg sulfates) may play a critical role in the chemical weathering of carbonate rocks in nature as well as in the decay of carbonate stone in buildings and statuary. © 2009 Elsevier Ltd. All rights reserved.

    Related items

    Showing items related by title, author, creator and subject.

    • The role of silicate surfaces on calcite precipitation kinetics
      Stockmann, G.; Wolff-Boenisch, Domenik; Bovet, N.; Gislason, S.; Oelkers, E. (2014)
      The aim of this study is to illuminate how calcite precipitation depends on the identity and structure of the growth substrate. Calcite was precipitated at 25 °C from supersaturated aqueous solutions in the presence of ...
    • Crystal growth and dissolution of calcite in the presence of fluoride ions: An atomic force microscopy study
      Vavouraki, A.; Putnis, Christine; Putnis, Andrew; Koutsoukos, P. (2010)
      Growth and dissolution of calcite {1014} surfaces in aqueous solutions in the presence of fluoride ions have been studied by in situ atomic force microscopy (AFM). Supersaturated and undersaturated solutions with respect ...
    • Direct nanoscale observations of the coupled dissolution of calcite and dolomite and the precipitation of gypsum
      Offeddu, F.; Cama, J.; Soler, J.; Putnis, Christine (2014)
      In-situ atomic force microscopy (AFM) experiments were performed to study the overall process of dissolution of common carbonate minerals (calcite and dolomite) and precipitation of gypsum in Na2SO4 and CaSO4 solutions ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.