Resorcinol Crystallization from the Melt: A New Ambient Phase and New "Riddles".
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
School
Funding and Sponsorship
Remarks
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of the American Chemical Society, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/jacs.6b01120, see http://pubs.acs.org/page/policy/articlesonrequest/index.html
Collection
Abstract
Structures of the a and ß phases of resorcinol, a major commodity chemical in the pharmaceutical, agrichemical, and polymer industries, were the first polymorphic pair of molecular crystals solved by X-ray analysis. It was recently stated that "no additional phases can be found under atmospheric conditions" (Druzbicki, K. et al. J. Phys. Chem. B 2015, 119, 1681). Herein is described the growth and structure of a new ambient pressure phase, e, through a combination of optical and X-ray crystallography and by computational crystal structure prediction algorithms. a-Resorcinol has long been a model for mechanistic crystal growth studies from both solution and vapor because prisms extended along the polar axis grow much faster in one direction than in the opposite direction. Research has focused on identifying the absolute sense of the fast direction-the so-called "resorcinol riddle"-with the aim of identifying how solvent controls crystal growth. Here, the growth velocity dissymmetry in the melt is analyzed for the ß phase. The e phase only grows from the melt, concomitant with the ß phase, as polycrystalline, radially growing spherulites. If the radii are polar, then the sense of the polar axis is an essential feature of the form. Here, this determination is made for spherulites of ß resorcinol (e, point symmetry 222, does not have a polar axis) with additives that stereoselectively modify growth velocities. Both ß and e have the additional feature that individual radial lamellae may adopt helicoidal morphologies. We correlate the appearance of twisting in β and ε with the symmetry of twist-inducing additives.
Related items
Showing items related by title, author, creator and subject.
-
Rossiter, Angelina Jane (2009)Due to the ductile nature of the sodium nitrate crystal which deforms plastically under high levels of strain, most of the crystal growth studies in aqueous solution have focussed on the influence of tensile strain, ...
-
Muryanto, Stefanus (2002)Scale formation is one of the persistent problems in mineral processing and related industries. One of the main components of the scale is frequently gypsum or calcium sulphate dihydrate (= CaS04.2H20). Gypsum is formed ...
-
Jiang, Chunbo; Huang, Haiying; Ma, Cungui; He, Tianbai; Zhang, Fajun (2013)We have studied the influence of the particle size and the tunable lateral interactions on the isotropic–nematic (I–N) phase transition of a plate-like colloidal system. The particles are single crystals of a block copolymer ...