Show simple item record

dc.contributor.authorLai, S.
dc.contributor.authorWu, Yong Hong
dc.date.accessioned2017-01-30T10:41:42Z
dc.date.available2017-01-30T10:41:42Z
dc.date.created2013-11-12T20:00:47Z
dc.date.issued2013
dc.identifier.citationLai, Shaoyong and Wu, Yonghong. 2013. The study of global weak solutions for a generalized hyperelastic-rod wave equation. Nonlinear Analysis: Theory, Methods & Applications.. 80: pp. 96-108.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/4790
dc.identifier.doi10.1016/j.na.2012.12.006
dc.description.abstract

The global weak solution to the Cauchy problem for a generalized hyperelastic-rod wave equation (or the generalized Camassa–Holm equation) is investigated in the space C(|0, ∞) × R ∩ L∞ (|0, ∞); H1(R) under the assumption that the initial value u0(x) belongs to the space H1(R). The limit of the viscous approximation for the equation is used to establish the existence of the global weak solution. The key elements in our analysis include a one-sided super bound estimate and a space–time higher-norm estimate on the first order derivatives of the solution with respect to the space variable.

dc.publisherElsevier
dc.subjectglobal weak solution
dc.subjectgeneralized hyperelastic-rod wave equation
dc.subjectexistence
dc.titleThe study of global weak solutions for a generalized hyperelastic-rod wave equation
dc.typeJournal Article
dcterms.source.volume80
dcterms.source.startPage96
dcterms.source.endPage108
dcterms.source.issn0362-546X
dcterms.source.titleNonlinear Analysis-Theory Methods & Applications
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record