Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Roles of biological and physical processes in driving seasonal air–sea CO2 flux in the Southern Ocean: New insights from CARIOCA pCO2

    Access Status
    Fulltext not available
    Authors
    Merlivat, L.
    Boutin, J.
    Antoine, David
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Merlivat, L. and Boutin, J. and Antoine, D. 2014. Roles of biological and physical processes in driving seasonal air–sea CO2 flux in the Southern Ocean: New insights from CARIOCA pCO2. Journal of Marine Systems. 147: pp. 9-20.
    Source Title
    Journal of Marine Systems
    DOI
    10.1016/j.jmarsys.2014.04.015
    ISSN
    09247963
    School
    Department of Imaging and Applied Physics
    URI
    http://hdl.handle.net/20.500.11937/48025
    Collection
    • Curtin Research Publications
    Abstract

    On a mean annual basis, the Southern Ocean is a sink for atmospheric CO2. However the seasonality of the air–sea CO2 flux in this region is poorly documented. We investigate processes regulating air–sea CO2 flux in a large area of the Southern Ocean (38°S–55°S, 60°W–60°E) that represents nearly one third of the subantarctic zone. A seasonal budget of CO2 partial pressure, pCO2 and of dissolved inorganic carbon, DIC in the mixed layer is assessed by quantifying the impacts of biology, physics and thermodynamical effect on seawater pCO2. A focus is made on the quantification at a monthly scale of the biological consumption as it is the dominant process removing carbon from surface waters. In situ biological carbon production rates are estimated from high frequency estimates of DIC along the trajectories of CARIOCA drifters in the Atlantic and Indian sector of the Southern Ocean during four spring–summer seasons over the 2006–2009 period.Net community production (NCP) integrated over the mixed layer is derived from the daily change of DIC, and mixed layer depth estimated from Argo profiles. Eleven values of NCP are estimated and range from 30 to 130 mmol C m− 2 d− 1. They are used as a constraint for validating satellite net primary production (NPP). A satellite data-based global model is used to compute depth integrated net primary production, NPP, for the same periods along the trajectories of the buoys. Realistic NCP/NPP ratios are obtained under the condition that the SeaWiFS chlorophyll are corrected by a factor of ≈ 2–3, which is an underestimation previously reported for the Southern Ocean.Monthly satellite based NPP are computed over the 38°S–55°S, 60°W–60°E area. pCO2 derived from these NPP combined with an export ratio, and taking into account the impact of physics and thermodynamics is in good agreement with the pCO2 seasonal climatology of Takahashi (2009). On an annual timescale, mean NCP values, 4.4 to 4.9 mol C m− 2 yr− 1 are ≈ 4–5 times greater than air–sea CO2 invasion, 1.0 mol C m− 2 yr− 1. Our study based on in situ and satellite observations provides a quantitative estimate of both seasonal and mean annual uptake of CO2 in the subantarctic zone of the Southern Ocean. These results bring important constraints for ocean circulation and biogeochemical models investigating future changes in the Southern Ocean CO2 fluxes.

    Related items

    Showing items related by title, author, creator and subject.

    • Roles of biological and physical processes in driving seasonal air–sea CO2 flux in the Southern Ocean: New insights from CARIOCA pCO2
      Merlivat, L.; Boutin, J.; Antoine, David (2015)
      On a mean annual basis, the Southern Ocean is a sink for atmospheric CO2. However the seasonality of the air–sea CO2 flux in this region is poorly documented. We investigate processes regulating air–sea CO2 flux in a large ...
    • Decadal changes (1980’s to 2000’s) of upper ocean carbon fluxes in the Mediterranean Sea
      Antoine, David; Taillandier, V.; D'Ortenzio, F. (2010)
      The air-sea CO2 flux, the carbon export to the deep layers, and more generally the carbon budgets are presently poorly characterized in the Mediterranean Sea. A first estimation of these fluxes at the scale of the ...
    • Satellite-driven modeling of the upper ocean mixed layer and air–sea CO2 flux in the Mediterranean Sea
      D’Ortenzio, F.; Antoine, David; Marullo, S. (2008)
      The air–sea CO2 flux, the carbon export to the deep layers, and more generally the carbon budgets are presently poorly characterized in the Mediterranean Sea. An approach to the simulation of these fluxes at regional scale ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.