Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Molecular simulation of CO2–CH4 competitive adsorption and induced coal swelling

    Access Status
    Fulltext not available
    Authors
    Zhang, J.
    Liu, K.
    Clennell, M.
    Dewhurst, D.
    Pervukhina, Marina
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhang, J. and Liu, K. and Clennell, M. and Dewhurst, D. and Pervukhina, M. 2015. Molecular simulation of CO2–CH4 competitive adsorption and induced coal swelling. Fuel. 160: pp. 309-317.
    Source Title
    Fuel
    DOI
    10.1016/j.fuel.2015.07.092
    ISSN
    0016-2361
    School
    Department of Exploration Geophysics
    URI
    http://hdl.handle.net/20.500.11937/48194
    Collection
    • Curtin Research Publications
    Abstract

    Adsorption isotherms of carbon dioxide (CO2) and methane (CH4) provide crucial information for CO2 sequestration and exploitation of coal seam gas. In this work, we focus on the competitive adsorption behavior of CO2 and CH4 in micropores of an intermediate ranked bituminous coal by performing Monte Carlo (MC) simulations at different injection depths from 300 m up to 3280 m with varying injected gas compositions. An extended poromechanical model enables us to relate our simulation results of adsorption to volumetric strain in the coal. Our simulations show that (i) CO2/CH4 adsorption selectivity, defined as the ratio of the mole fractions of the two species in the adsorbed phase relative to the ratio of the mole fractions in the bulk phase, decreases with increasing injection depth for a fixed injected gas composition, (ii) at a given depth, CO2/CH4 adsorption selectivity decreases as the concentration of CO2 in the injected gas increases, (iii) CO2/CH4 adsorption selectivity appears to be a function of pressure and gas composition at a given temperature. The total adsorption increases with increasing concentration of CO2 in the injected gas at constant gas reservoir pressure. The CO2/CH4 adsorption selectivity decreases with increasing bulk CO2 mole fraction after an initial increase at low pressures, (iv) the volumetric strain has a direct correlation with the injected gas composition and increases with the concentration of CO2 in the injected gas. At 370.2 K the largest volumetric strain of 3.6% is predicted at 30 MPa for pure CO2 adsorption.

    Related items

    Showing items related by title, author, creator and subject.

    • Changes on the low-temperature oxidation characteristics of coal after CO2 adsorption: A case study
      Feng, G.; Wu, Y.; Zhang, C.; Hu, S.; Shao, H.; Xu, Guang; Ren, X.; Wang, Z. (2017)
      © 2017 Elsevier Ltd. Coal spontaneous combustion is a natural hazard during mining. In China, the longwall gob area is the main places that are prone to coal spontaneous combustion due to excessive residual coal in the ...
    • CO2 Wettability of Shales and Coals as a Function of Pressure, Temperature and Rank: Implications for CO2 Sequestration and Enhanced Methane Recovery
      Arif, M.; Barifcani, Ahmed; Zubair, T.; Lebedev, Maxim; Iglauer, Stefan (2016)
      The underground geological CO 2 storage into oil and gas reservoirs and/or saline aquifers is a promosing technique to reduce anthropogenic greenhouse gas emissions which thus ensures clean environment. CO 2 can also be ...
    • The organic geochemistry of marine-influenced coals.
      Sandison, Carolyn M. (2001)
      The importance of organic sulphur fixation in the preservation of organic matter in humic coal-forming environments is demonstrated in this thesis. The transgression of coal depositional systems by marine waters during ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.