Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Transcriptomics of cortical gray matter thickness decline during normal aging

    Access Status
    Fulltext not available
    Authors
    Kochunov, P.
    Charlesworth, J.
    Winkler, A.
    Hong, L.
    Nichols, T.
    Curran, J.
    Sprooten, E.
    Jahanshad, N.
    Thompson, P.
    Johnson, M.
    Kent, J.
    Landman, B.
    Mitchell, B.
    Cole, S.
    Dyer, T.
    Moses, Eric
    Goring, H.
    Almasy, L.
    Duggirala, R.
    Olvera, R.
    Glahn, D.
    Blangero, J.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kochunov, P. and Charlesworth, J. and Winkler, A. and Hong, L. and Nichols, T. and Curran, J. and Sprooten, E. et al. 2013. Transcriptomics of cortical gray matter thickness decline during normal aging. NeuroImage. 82: pp. 273-283.
    Source Title
    NeuroImage
    DOI
    10.1016/j.neuroimage.2013.05.066
    ISSN
    1053-8119
    School
    School of Biomedical Sciences
    URI
    http://hdl.handle.net/20.500.11937/48268
    Collection
    • Curtin Research Publications
    Abstract

    Introduction: We performed a whole-transcriptome correlation analysis, followed by the pathway enrichment and testing of innate immune response pathway analyses to evaluate the hypothesis that transcriptional activity can predict cortical gray matter thickness (GMT) variability during normal cerebral aging. Methods: Transcriptome and GMT data were available for 379 individuals (age range = 28–85) community-dwelling members of large extended Mexican American families. Collection of transcriptome data preceded that of neuroimaging data by 17 years. Genome-wide gene transcriptome data consisted of 20,413 heritable lymphocytes-based transcripts. GMT measurements were performed from high-resolution (isotropic 800 μm) T1-weighted MRI. Transcriptome-wide and pathway enrichment analysis was used to classify genes correlated with GMT. Transcripts for sixty genes from seven innate immune pathways were tested as specific predictors of GMT variability. Results:Transcripts for eight genes (IGFBP3, LRRN3, CRIP2, SCD, IDS, TCF4, GATA3, and HN1) passed the transcriptome-wide significance threshold. Four orthogonal factors extracted from this set predicted 31.9% of the variability in the whole-brain and between 23.4 and 35% of regional GMT measurements. Pathway enrichment analysis identified six functional categories including cellular proliferation, aggregation, differentiation, viral infection, and metabolism. The integrin signaling pathway was significantly (p < 10− 6) enriched with GMT. Finally, three innate immune pathways (complement signaling, toll-receptors and scavenger and immunoglobulins) were significantly associated with GMT.Conclusion: Expression activity for the genes that regulate cellular proliferation, adhesion, differentiation and inflammation can explain a significant proportion of individual variability in cortical GMT. Our findings suggest that normal cerebral aging is the product of a progressive decline in regenerative capacity and increased neuroinflammation.

    Related items

    Showing items related by title, author, creator and subject.

    • Genome-wide transcriptome directed pathway analysis of maternal pre-eclampsia susceptibility genes
      Yong, H.; Melton, P.; Johnson, M.; Freed, K.; Kalionis, B.; Murthi, P.; Brennecke, S.; Keogh, R.; Moses, Eric (2015)
      Background: Preeclampsia (PE) is a serious hypertensive pregnancy disorder with a significant genetic component. Numerous genetic studies, including our own, have yielded many susceptibility genes from distinct functional ...
    • Time course-dependent changes in the transcriptome of human skeletal muscle during recovery from endurance exercise: From inflammation to adaptive remodeling
      Neubauer, O.; Sabapathy, S.; Ashton, K.; Desbrow, B.; Peake, J.; Lazarus, R.; Wessner, B.; Cameron-Smith, D.; Wagner, K.; Haseler, Luke; Bulmer, A. (2014)
      Reprogramming of gene expression is fundamental for skeletal muscle adaptations in response to endurance exercise. This study investigated the time course-dependent changes in the muscular transcriptome after an endurance ...
    • Brain transcriptome perturbations in the transferrin receptor 2 mutant mouse support the case for brain changes in iron loading disorders, including effects relating to long-term depression and long-term potentiation
      Acikyol, B.; Graham, Ross; Trinder, D.; House, M.; Olynyk, John; Scott, R.; Milward, E; Johnstone, D. (2013)
      Iron abnormalities within the brain are associated with several rare but severe neurodegenerative conditions. There is growing evidence that more common systemic iron loading disorders such as hemochromatosis can also ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.