Show simple item record

dc.contributor.authorCloete, Schalk
dc.contributor.authorEksteen, Jacques
dc.contributor.authorBradshaw, Steven
dc.date.accessioned2017-01-30T10:42:25Z
dc.date.available2017-01-30T10:42:25Z
dc.date.created2014-03-23T20:00:53Z
dc.date.issued2013
dc.identifier.citationCloete, Schalk and Eksteen, Jacques and Bradshaw, Steven. 2013. A numerical modelling investigation into design variables influencing mixing efficiency in full scale gas stirred ladles. Minerals Engineering. 46-47: pp. 16-24.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/4907
dc.identifier.doi10.1016/j.mineng.2013.03.014
dc.description.abstract

A mathematical model of a full scale gas stirred ladle was implemented in designed experiments to assess the influence of various design variables on mixing efficiency. The discrete phase (DPM) and volume of fluid (VOF) models were used in conjunction to describe the different phases and the standard k–ε approach was used for modelling turbulence. Ladle height was identified as the most influential factor in determining mixing efficiency and could be altered by either changing the aspect ratio or the overall scale of the ladle. Gas injection through multiple tuyeres was also identified as a promising strategy for improving mixing, but the success of this strategy depended greatly on the tuyere arrangement. Incorrect tuyere arrangements created significant flow pattern interference in the ladle, which had a detrimental effect on mixing. At high aspect ratios, it was shown that the cross sectional area of the ladle can become too narrow, causing additional flow pattern interference between the rising plumes and the downward recirculating flows.

dc.publisherElsevier
dc.subjectGas stirred ladle
dc.subjectVolume of fluid model
dc.subjectHydrodynamics
dc.subjectMixing efficiency
dc.subjectDiscrete phase model
dc.titleA numerical modelling investigation into design variables influencing mixing efficiency in full scale gas stirred ladles
dc.typeJournal Article
dcterms.source.volume46-47
dcterms.source.startPage16
dcterms.source.endPage24
dcterms.source.issn08926875
dcterms.source.titleMinerals Engineering
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record