Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Actin Nemaline Myopathy Mouse Reproduces disease, suggests other actin disease phenotypes and provides cautionary note on muscle transgene expression

    Access Status
    Open access via publisher
    Authors
    Ravenscroft, G.
    Jackaman, Connie
    Sewry, C.
    Mcnamara, E.
    Squire, S.
    Potter, A.
    Papadimitriou, J.
    Griffiths, L.
    Bakker, A.
    Davies, K.
    Laing, N.
    Nowak, K.
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ravenscroft, G. and Jackaman, C. and Sewry, C. and Mcnamara, E. and Squire, S. and Potter, A. and Papadimitriou, J. et al. 2011. Actin Nemaline Myopathy Mouse Reproduces disease, suggests other actin disease phenotypes and provides cautionary note on muscle transgene expression. PLoS ONE. 6 (12): e28699.
    Source Title
    PLoS ONE
    DOI
    10.1371/journal.pone.0028699
    ISSN
    19326203
    School
    School of Biomedical Sciences
    URI
    http://hdl.handle.net/20.500.11937/49290
    Collection
    • Curtin Research Publications
    Abstract

    Mutations in the skeletal muscle a-actin gene (ACTA1) cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G) of ACTA1 (identified in a severe nemaline myopathy patient) fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle a-actin- EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT) muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were ~30% less active on voluntary running wheels than WT mice. The a-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC) fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations.

    Related items

    Showing items related by title, author, creator and subject.

    • Mutations and polymorphisms of the skeletal muscle a-actin gene (ACTA1)
      Laing, N.; Dye, Danielle; Wallgren-Pettersson, C.; Richard, G.; Monnier, N.; Lillis, S.; Winder, T.; Lochmüller, H.; Graziano, C.; Mitrani-Rosenbaum, S.; Twomey, D.; Sparrow, J.; Beggs, A.; Nowak, K. (2009)
      The ACTA1 gene encodes skeletal muscle a-actin, which is the predominant actin isoform in the sarcomeric thin filaments of adult skeletal muscle, and essential, along with myosin, for muscle contraction. ACTA1 disease-causing ...
    • Analysis of candidate genes within the 3p14-p22 region of the human genome for association with bone mineral density phenotypes
      Mullin, Benjamin H (2011)
      Previous studies have identified the 3p14-p22 chromosomal region as a quantitative trait locus for bone mineral density (BMD). The overall aim of this thesis is to identify the gene or genes from this region that are ...
    • Statin-induced myopathy and the benefit of oral administration of coenzyme Q10
      Kurniawan, Dede Indra (2007)
      Background. Muscle cramps are one of the adverse affects suffered by hypercholesterolemia patients who are treated with statins. Besides reducing cholesterol levels, statins also reduce coenzyme Q10 (CoQ10) blood levels. ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.