Predictive control of drying process using an adaptive neuro-fuzzy and partial least squares approach
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
Additional URLs
ISSN
School
Collection
Abstract
In this paper, adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), and partial least squares (PLS) approaches are applied to predictive control of a drying process. In the proposed approaches, the PLS analysis is used to pre-process actual data and to provide the necessary background to apply ANN and ANFIS approaches. A reasonable section of this study is assigned to the modeling with the aim at predicting the granule particle size and executing by ANFIS and ANN. ANN holds the promise of being capable of producing non-linear models, being able to work under noise conditions, and being fault tolerant to the loss of neurons or connections. Also, the ANFIS approach combines the advantages of fuzzy system and artificial neural network to design architecture and is capable of dealing with both limitation and complexity in the data set. The efficiencies of ANFIS and ANN approaches in prediction are compared and the superior approach is selected. Finally, by deploying the preferred approach, several scenarios are presented to be used in predictive control of spray drying as an accurate, fast running, and inexpensive tool. This is the first study that presents a flexible intelligent approach for predictive control of drying process by ANN, ANFIS, and PLS. The approach of this study may be easily applied to other production process.
Related items
Showing items related by title, author, creator and subject.
-
Aliabadian, Z.; Sharifzadeh, Mostafa; Sharafisafa, M. (2015)Among the rock mass properties, deformation modulus of rock mass (Em) is important for implementation and successful execution of rock engineering projects. The direct field measurements of modulus determination is costive ...
-
Latuny, Jonny; Entwistle, Rodney (2012)This paper presents an investigation process in building a bearing fault classifier based on wavelet coefficients and statistical parameter features. The building process starts by processing raw vibration data that was ...
-
Sarukkalige, Priyantha Ranjan; Badrzadeh, Honey (2014)Accurate river flow forecasts play a key role in sustainable water resources and environmental management. Recently, computational intelligence approaches have become increasingly popular due to minimum information ...