On detecting millisecond pulsars at the galactic center
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This is an author-created, un-copy edited version of an article accepted for publication in Astrophysical Journal. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://doi.org/10.1088/0004-637X/805/2/172
Collection
Abstract
The lack of detected pulsars at the Galactic Center (GC) region is a long-standing mystery. We argue that the high stellar density in the central parsec around the GC is likely to result in a pulsar population dominated by millisecond pulsars (MSPs), similar to the situation in globular cluster environments. Earlier GC pulsar searches have been largely insensitive to such an MSP population, accounting for the lack of pulsar detections. We estimate the best search frequency for such an MSP population with present and upcoming broad-band radio telescopes for two possible scattering scenarios, the “weak-scattering” case suggested by the recent detection of a magnetar close to the GC, and the “strong-scattering” case, with the scattering screen located close to the GC. The optimal search frequencies are ≈ 8 GHz ( weak-scattering ) and ≈ 25 GHz ( strong-scattering ) , for pulsars with periods 1 – 20 ms, assuming that GC pulsars have a luminosity distribution similar to that those in the rest of the Milky Way. We find that 10 – 30 hr integrations with the Very Large Array and the Green Bank Telescope would be sufficient to detect MSPs at the GC distance in the weak-scattering case. However, if the strong-scattering case is indeed applicable to the GC, observations with the full Square Kilometre Array would be needed to detect the putative MSP population.
Related items
Showing items related by title, author, creator and subject.
-
Noutsos, A.; Sobey, C.; Kondratiev, V.; Weltevrede, P.; Verbiest, J.; Karastergiou, A.; Kramer, M.; Kuniyoshi, M.; Alexov, A.; Breton, R.; Bilous, A.; Cooper, S.; Falcke, H.; Grießmeier, J.; Hassall, T.; Hessels, J.; Keane, E.; Oslowski, S.; Pilia, M.; Serylak, M.; Stappers, B.; Ter Veen, S.; Van Leeuwen, J.; Zagkouris, K.; Anderson, K.; Bähren, L.; Bell, M.; Broderick, J.; Carbone, D.; Cendes, Y.; Coenen, T.; Corbel, S.; Eislöffel, J.; Fender, R.; Garsden, H.; Jonker, P.; Law, C.; Markoff, S.; Masters, J.; Miller-Jones, James; Molenaar, G.; Osten, R.; Pietka, M.; Rol, E.; Rowlinson, A.; Scheers, B.; Spreeuw, H.; Staley, T.; Stewart, A.; Swinbank, J.; Wijers, R.; Wijnands, R.; Wise, M.; Zarka, P.; Van Der Horst, A. (2015)Aims: We present the highest-quality polarisation profiles to date of 16 non-recycled pulsars and four millisecond pulsars, observed below 200 MHz with the LOFAR high-band antennas. Based on the observed profiles, we ...
-
Ng, C.; Champion, D.; Bailes, M.; Barr, E.; Bates, S.; Bhat, Ramesh; Burgay, M.; Burke-Spolaor, S.; Flynn, C.; Jameson, A.; Johnston, S.; Keith, M.; Kramer, M.; Levin, L.; Petroff, E.; Possenti, A.; Stappers, B.; Van Straten, W.; Tiburzi, C.; Eatough, R.; Lyne, A. (2015)© 2015 The Authors. We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational ...
-
Ravi, V.; Wyithe, J.; Hobbs, G.; Shannon, Ryan; Manchester, R.; Yardley, D.; Keith, M. (2012)We investigate the effects of gravitational waves (GWs) from a simulated population of binary supermassive black holes (SMBHs) on pulsar timing array data sets. We construct a distribution describing the binary SMBH ...