The fully relativistic implementation of the convergent close-coupling method
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The calculation of accurate excitation and ionization cross sections for electron collisions with atoms and ions plays a fundamental role in atomic and molecular physics, laser physics, x-ray spectroscopy, plasma physics and chemistry. Within the veil of plasma physics lie important research areas affiliated with the lighting industry, nuclear fusion and astrophysics. For high energy projectiles or targets with a large atomic number it is presently understood that a scattering formalism based on the Dirac equation is required to incorporate relativistic effects. This tutorial outlines the development of the relativistic convergent close-coupling (RCCC) method and highlights the following three main accomplishments. (i) The inclusion of the Breit interaction, a relativistic correction to the Coulomb potential, in the RCCC method. This led to calculations that resolved a discrepancy between theory and experiment for the polarization of x-rays emitted by highly charged hydrogen-like ions excited by electron impact (Bostock et al 2009 Phys. Rev. A 80 052708). (ii) The extension of the RCCC method to accommodate two-electron and quasi-two-electron targets. The method was applied toelectron scattering from mercury. Accurate plasma physics modelling of mercury-based fluorescent lamps requires detailed information on a large number of electron impact excitation cross sections involving transitions between various states (Bostock et al 2010 Phys. Rev. A 82 022713). (iii) The third accomplishment outlined in this tutorial is the restructuring of the RCCC computer code to utilize a hybrid OpenMP–MPI parallelization scheme which now enables the RCCC code to run on the latest high performance supercomputer architectures.
Related items
Showing items related by title, author, creator and subject.
-
Bostock, Christopher (2010)The calculation of accurate excitation and ionization cross sections for electron collisions with atoms and ions plays a fundamental role in atomic and molecular physics, laser physics, x-ray spectroscopy, plasma physics ...
-
Bostock, Christopher; Fursa, Dmitry; Bray, Igor (2012)We report on the recent extension of the RCCC method to accommodate electron scattering from quasi-two electron targets. We present results for electron scattering from mercury (Z = 80) which serves as a testing ground ...
-
Bray, Igor; Fursa, Dmitry; Stelbovics, Andris (2009)Recently the non-relativistic convergent close-coupling method has been extended into the relativistic domain [1]. When applied to electron impact collision processes for highly charged hydrogen-like ions, the RCCC method ...