Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Three-dimensional finite element modelling of rocking bridge piers under cyclic loading and exploration of options for increased energy dissipation

    Access Status
    Fulltext not available
    Authors
    Leitner, E.
    Hao, Hong
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Leitner, E. and Hao, H. 2016. Three-dimensional finite element modelling of rocking bridge piers under cyclic loading and exploration of options for increased energy dissipation. Engineering Structures. 118: pp. 74-88.
    Source Title
    Engineering Structures
    DOI
    10.1016/j.engstruct.2016.03.042
    ISSN
    0141-0296
    School
    Department of Civil Engineering
    URI
    http://hdl.handle.net/20.500.11937/4972
    Collection
    • Curtin Research Publications
    Abstract

    The development of rocking in bridge structures has been identified as a valid isolation technique for structures under seismic loading. By utilising uplift in the bridge system, ductility and strength demands can be reduced on the structural element, limiting damage, and reducing residual displacements of the structure due to the system's self-centring capability. A disadvantage has been identified, however, in the largely reduced hysteretic energy dissipation capacity of the rocking system. The objective of the present study is the development and validation of two three-dimensional finite element models undergoing cyclic quasi-static loading, using the software package ANSYS - a conventional reinforced concrete monolithic bridge pier and a precast post-tensioned concrete bridge pier wrapped in fibre-reinforced polymer (FRP), which allows uplift. The validation of these models according to existing experimental data focuses on the damage of the bridge pier under sustained loading and the corresponding concrete constitutive models utilised. Once validated, further models may be simulated which better identify the advantages of both the use of FRP and allowing the development of a rocking motion under cyclic loading. Furthermore, a study of different methods of increasing the energy dissipation of the system is presented, focusing on the use of both mild steel and superelastic shape memory alloy (SMA) dissipaters placed either internally or externally in various configurations. The study identifies many potential solutions for increasing the hysteretic energy dissipation of the rocking system whilst maintaining a small residual drift.

    Related items

    Showing items related by title, author, creator and subject.

    • Laboratory tests and numerical simulations of barge impact on circular reinforced concrete piers
      Sha, Y.; Hao, Hong (2013)
      Bridge structures across navigable waterways are vulnerable to barge collisions. To protect the bridge structure, bridge piers should be specially designed to resist barge impact load. In order to quantify the impact load, ...
    • Numerical simulation of barge impact on a continuous girder bridge and bridge damage detection
      Sha, Y.; Hao, Hong (2013)
      Vessel collisions on bridge piers have been frequently reported. As many bridges are vital in transportation networks and serve as lifelines, bridge damage might leads to catastrophic consequences to life and economy. ...
    • Laboratory Tests and Numerical Simulations of CFRP Strengthened RC Pier Subjected to Barge Impact Load
      Sha, Y.; Hao, Hong (2015)
      Bridge piers are designed to withstand not only axial loads of superstructures and passingvehicles but also out-of-plane loads such as earthquake excitations and vessel impact loads.Vessel impact on bridge piers can lead ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.