Truncated unscented kalman filtering
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
We devise a filtering algorithm to approximate the first two moments of the posterior probability density function (PDF). The novelties of the algorithm are in the update step. If the likelihood has a bounded support, we can use a modified prior distribution that meets Bayes' rule exactly. Applying a Kalman filter (KF) to the modified prior distribution, referred to as truncated Kalman filter (TKF), can vastly improve the performance of the conventional Kalman filter, particularly when the measurements are informative relative to the prior. The application of the TKF to practical problems in which the measurement noise PDF has unbounded support is achieved by imposing several approximating assumptions which are valid only when the measurements are informative. This implies that we adaptively choose between an approximation to the KF or the TKF according to the information provided by the measurement. The resulting algorithm based on the unscented transformation is referred to as truncated unscented KF.
Related items
Showing items related by title, author, creator and subject.
-
Raitoharju, M.; Garcia Fernandez, Angel; Piché, R. (2017)Kalman filtering is a widely used framework for Bayesian estimation. The partitioned update Kalman filter applies a Kalman filter update in parts so that the most linear parts of measurements are applied first. In this ...
-
Khaki, M.; Hamilton, F.; Forootan, E.; Hoteit, I.; Awange, Joseph; Kuhn, Michael (2018)Data assimilation, which relies on explicit knowledge of dynamical models, is a well-known approach that addresses models' limitations due to various reasons, such as errors in input and forcing data sets. This approach, ...
-
El-Mowafy, Ahmed; Mohamed, A. (2005)An adaptive Kalman filtering approach is proposed for attitude determination to replace the fixed (conventional) Kalman filtering approach. The filter is used to adaptively reflect system dynamics changes or rapid changes ...