Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    LS-SVM approximate solution for affine nonlinear systems with partially unknown functions

    Access Status
    Open access via publisher
    Authors
    Zhang, G.
    Wang, S.
    Wang, Y.
    Liu, Wan-Quan
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhang, G. and Wang, S. and Wang, Y. and Liu, W. 2014. LS-SVM approximate solution for affine nonlinear systems with partially unknown functions. Journal of Industrial and management optimization. 10 (2): pp. 621-636.
    Source Title
    Journal of Industrial and management optimization
    DOI
    10.3934/jimo.2014.10.621
    ISSN
    1547-5816
    School
    Department of Computing
    URI
    http://hdl.handle.net/20.500.11937/49945
    Collection
    • Curtin Research Publications
    Abstract

    By using the Least Squares Support Vector Machines (LS-SVMs), we develop a numerical approach to find an approximate solution for affine nonlinear systems with partially unknown functions. This approach can obtain continuous and differential approximate solutions of the nonlinear differential equations, and can also identify the unknown nonlinear part through a set of measured data points. Technically, we first map the known part of the affine nonlinear systems into high dimensional feature spaces and derive the form of approximate solution. Then the original problem is formulated as an approximation problem via kernel trick with LS-SVMs. Furthermore, the approximation of the known part can be expressed via some linear equations with coefficient matrices as coupling square matrices, and the unknown part can be identified by its relationship to the known part and the approximate solution of affine nonlinear systems. Finally, several examples for different systems are presented to illustrate the validity of the proposed approach.

    Related items

    Showing items related by title, author, creator and subject.

    • Optimal control problems involving constrained, switched, and delay systems
      Loxton, Ryan Christopher (2010)
      In this thesis, we develop numerical methods for solving five nonstandard optimal control problems. The main idea of each method is to reformulate the optimal control problem as, or approximate it by, a nonlinear programming ...
    • Computational methods for solving optimal industrial process control problems
      Chai, Qinqin (2013)
      In this thesis, we develop new computational methods for three classes of dynamic optimization problems: (i) A parameter identification problem for a general nonlinear time-delay system; (ii) an optimal control problem ...
    • Applications of Linear and Nonlinear Models
      Grafarend, E.; Awange, Joseph (2012)
      Here we present a nearly complete treatment of the Grand Universe of linear and weakly nonlinear regression models within the first 8 chapters. Our point of view is both an algebraic view as well as a stochastic one. For ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.