Simulation of a Bioreactor with an Improved Fermentation Kinetics – Fluid Flow Model
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Ethanolic fermentation experiments were carried out using a stirred tank equipped with a Rushton turbine. The data were used to estimate kinetic parameters based on a newly developed kinetics model originated from Herbert’s microbial kinetics model. This newly developed model took into account the effects of aeration rate (AR) and stirrer speed (SS). Experiment data i.e. glucose, ethanol and biomass concentrations obtained from different experiment sets were used for kinetics prediction. Assuming a perfectly-stirred condition, the kinetic parameters were initially estimated through solving Herbert’s model equations. These estimated kinetic parameters were then incorporated in a Computational Fluid Dynamics (CFD) model but the simulation results did not agree well with the experiment findings. Based on the proposed CFD model, the kinetic parameters were corrected. The correction factors were expressed as functions of AR and SS. This analysis highlighted the need to estimate kinetic parameters based on CFD simulation because it is able to account for the spatial variation in a reactor. A sensitivity analysis of the kinetic parameters using the coupled CFD-fermentation kinetic model was carried out to further understand the influence of each set of kinetic parameters on the model prediction. It was found that the sensitivities of the kinetic parameters varied with the concentrations of glucose, ethanol and biomass.
Related items
Showing items related by title, author, creator and subject.
-
Li, Tian Siong (2000)Precipitation of gibbsite from supersaturated caustic aluminate solutions has been investigated extensively due to its central role in the commercial Bayer plant, for extracting the alumina compound from bauxite. The ...
-
Amiri, Amirpiran (2013)The alumina industry provides the feedstock for aluminium metal production and contributes to around A$6 billion of Australian exports annually. One of the most energy-intensive parts of alumina production, with a strong ...
-
Che Ibrahim, Shariff (2010)Barley straw, an agricultural byproduct, was identified as a potential adsorbent material for wastewater treatment as it offers various advantages such as abundant availability at no or very low cost, little processing ...