Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Simulation of a Bioreactor with an Improved Fermentation Kinetics – Fluid Flow Model

    249565.pdf (935.4Kb)
    Access Status
    Open access
    Authors
    Law, Ming
    Teng, E.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Law, M. and Teng, E. 2016. Simulation of a Bioreactor with an Improved Fermentation Kinetics – Fluid Flow Model. Pertanika Journal of Science & Technology. 24 (1): pp. 137-163.
    Source Title
    Pertanika Journal of Science & Technology
    ISSN
    0128-7680
    School
    Curtin Sarawak
    URI
    http://hdl.handle.net/20.500.11937/49956
    Collection
    • Curtin Research Publications
    Abstract

    Ethanolic fermentation experiments were carried out using a stirred tank equipped with a Rushton turbine. The data were used to estimate kinetic parameters based on a newly developed kinetics model originated from Herbert’s microbial kinetics model. This newly developed model took into account the effects of aeration rate (AR) and stirrer speed (SS). Experiment data i.e. glucose, ethanol and biomass concentrations obtained from different experiment sets were used for kinetics prediction. Assuming a perfectly-stirred condition, the kinetic parameters were initially estimated through solving Herbert’s model equations. These estimated kinetic parameters were then incorporated in a Computational Fluid Dynamics (CFD) model but the simulation results did not agree well with the experiment findings. Based on the proposed CFD model, the kinetic parameters were corrected. The correction factors were expressed as functions of AR and SS. This analysis highlighted the need to estimate kinetic parameters based on CFD simulation because it is able to account for the spatial variation in a reactor. A sensitivity analysis of the kinetic parameters using the coupled CFD-fermentation kinetic model was carried out to further understand the influence of each set of kinetic parameters on the model prediction. It was found that the sensitivities of the kinetic parameters varied with the concentrations of glucose, ethanol and biomass.

    Related items

    Showing items related by title, author, creator and subject.

    • Modelling and kinetics estimation in gibbsite precipitation from caustic aluminate solutions
      Li, Tian Siong (2000)
      Precipitation of gibbsite from supersaturated caustic aluminate solutions has been investigated extensively due to its central role in the commercial Bayer plant, for extracting the alumina compound from bauxite. The ...
    • Multi-scale modelling of Gibbsite calcination in a fluidized bed reactor
      Amiri, Amirpiran (2013)
      The alumina industry provides the feedstock for aluminium metal production and contributes to around A$6 billion of Australian exports annually. One of the most energy-intensive parts of alumina production, with a strong ...
    • Treatment of oily and dye wastewater with modified barley straw
      Che Ibrahim, Shariff (2010)
      Barley straw, an agricultural byproduct, was identified as a potential adsorbent material for wastewater treatment as it offers various advantages such as abundant availability at no or very low cost, little processing ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.