Classification of epilepsy seizure phase using interval type-2 fuzzy support vector machines
dc.contributor.author | Ekong, U. | |
dc.contributor.author | Lam, H. | |
dc.contributor.author | Xiao, B. | |
dc.contributor.author | Ouyang, G. | |
dc.contributor.author | Liu, H. | |
dc.contributor.author | Chan, Kit Yan | |
dc.contributor.author | Ling, S. | |
dc.date.accessioned | 2017-03-15T22:17:03Z | |
dc.date.available | 2017-03-15T22:17:03Z | |
dc.date.created | 2017-02-26T19:31:36Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Ekong, U. and Lam, H. and Xiao, B. and Ouyang, G. and Liu, H. and Chan, K.Y. and Ling, S. 2016. Classification of epilepsy seizure phase using interval type-2 fuzzy support vector machines. Neurocomputing. 199: pp. 66-76. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/49985 | |
dc.identifier.doi | 10.1016/j.neucom.2016.03.033 | |
dc.description.abstract |
An interval type-2 fuzzy support vector machine (IT2FSVM) is proposed to solve a classification problem which aims to classify three epileptic seizure phases (seizure-free, pre-seizure and seizure) from the electroencephalogram (EEG) captured from patients with neurological disorder symptoms. The effectiveness of the IT2FSVM classifier is evaluated based on a set of EEG samples which are collected from 10 patients at Peking university hospital. The EEG samples for the three seizure phases were captured by the 112 2-s 19 channel EEG epochs, where each patient was extracted for each sample. Feature extraction was used to reduce the feature vector of the EEG samples to 45 elements and the EEG samples with the reduced features are used for training the IT2FSVM classifier. The classification results obtained by the IT2FSVM are compared with three traditional classifiers namely Support Vector Machine, k-Nearest Neighbor and naive Bayes. The experimental results show that the IT2FSVM classifier is able to achieve superior learning capabilities with respect to the uncontaminated samples when compared with the three classifiers. In order to validate the level of robustness of the IT2FSVM, the original EEG samples are contaminated with Gaussian white noise at levels of 0.05, 0.1, 0.2 and 0.5. The simulation results show that the IT2FSVM classifier outperforms the traditional classifiers under the original dataset and also shows a high level of robustness when compared to the traditional classifiers with white Gaussian noise applied to it. | |
dc.publisher | Elsevier BV | |
dc.title | Classification of epilepsy seizure phase using interval type-2 fuzzy support vector machines | |
dc.type | Journal Article | |
dcterms.source.volume | 199 | |
dcterms.source.startPage | 66 | |
dcterms.source.endPage | 76 | |
dcterms.source.issn | 0925-2312 | |
dcterms.source.title | Neurocomputing | |
curtin.department | Department of Electrical and Computer Engineering | |
curtin.accessStatus | Fulltext not available |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |