Razor: Mining distance-constrained embedded subtrees
Access Status
Authors
Date
2006Type
Metadata
Show full item recordCitation
Source Title
Source Conference
Faculty
School
Remarks
Copyright 2006 IEEE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Collection
Abstract
Our work is focused on the task of mining frequent subtrees from a database of rooted ordered labelled subtrees. Previously we have developed an efficient algorithm, MB3 [12], for mining frequent embedded subtrees from a database of rooted labeled and ordered subtrees. The efficiency comes from the utilization of a novel Embedding List representation for Tree Model Guided (TMG) candidate generation. As an extension the IMB3 [13] algorithm introduces the Level of Embedding constraint. In this study we extend our past work by developing an algorithm, Razor, for mining embedded subtrees where the distance of nodes relative to the root of the subtree needs to be considered. This notion of distance constrained embedded tree mining will have important applications in web information systems, conceptual model analysis and more sophisticated ontology matching. Domains representing their knowledge in a tree structured form may require this additional distance information as it commonly indicates the amount of specific knowledge stored about a particular concept within the hierarchy. The structure based approaches for schema matching commonly take the distance among the concept nodes within a sub-structure into account when evaluating the concept similarity across different schemas. We present an encoding strategy to efficiently enumerate candidate subtrees taking the distance of nodes relative to the root of the subtree into account. The algorithm is applied to both synthetic and real-world datasets, and the experimental results demonstrate the correctness and effectiveness of the proposed technique.
Related items
Showing items related by title, author, creator and subject.
-
Tan, H.; Hadzic, Fedja; Dillon, T. (2012)The increasing need for representing information through more complex structures where semantics and relationships among data objects can be more easily expressed has resulted in many semi-structured data sources. Structure ...
-
Hadzic, Fedja; Tan, Henry; Dillon, Tharam S. (2008)Frequent subtree mining is an important problem in the area of association rule mining from semi-structured or tree structured documents, often found in many commercial, web and scientific domains. This paper presents the ...
-
Tan, Henry; Hadzic, Fedja; Dillon, Tharam S.; Chang, Elizabeth; Feng, Ling; Feng, L. (2008)Due to the inherent flexibilities in both structure and semantics, XML association rules mining faces few challenges, such as: a more complicated hierarchical data structure and ordered data context. Mining frequent ...