Show simple item record

dc.contributor.authorWhitehead, M.
dc.contributor.authorCatullo, R.
dc.contributor.authorRuibal, M.
dc.contributor.authorDixon, Kingsley
dc.contributor.authorPeakall, R.
dc.contributor.authorLinde, C.
dc.date.accessioned2017-03-15T22:23:25Z
dc.date.available2017-03-15T22:23:25Z
dc.date.created2017-03-08T06:39:38Z
dc.date.issued2017
dc.identifier.citationWhitehead, M. and Catullo, R. and Ruibal, M. and Dixon, K. and Peakall, R. and Linde, C. 2017. Evaluating multilocus Bayesian species delimitation for discovery of cryptic mycorrhizal diversity. Fungal Ecology. 26: pp. 74-84.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/50227
dc.identifier.doi10.1016/j.funeco.2016.11.009
dc.description.abstract

The increasing availability of DNA sequence data enables exciting new opportunities for fungal ecology. However, it amplifies the challenge of how to objectively classify the diversity of fungal sequences into meaningful units, often in the absence of morphological characters. Here, we test the utility of modern multilocus Bayesian coalescent-based methods for delimiting cryptic fungal diversity in the orchid mycorrhiza morphospecies Serendipita vermifera. We obtained 147 fungal isolates from Caladenia, a speciose clade of Australian orchids known to associate with Serendipita fungi. DNA sequence data for 7 nuclear and mtDNA loci were used to erect competing species hypotheses by clustering isolates based on: (a) ITS sequence divergence, (b) Bayesian admixture analysis, and (c) mtDNA variation. We implemented two coalescent-based Bayesian methods to determine which species hypothesis best fitted our data. Both methods found strong support for eight species of Serendipita among our isolates, supporting species boundaries reflected in ITS divergence. Patterns of host plant association showed evidence for both generalist and specialist associations within the host genus Caladenia. Our findings demonstrate the utility of Bayesian species delimitation methods and suggest that wider application of these techniques will readily uncover new species in other cryptic fungal lineages.

dc.titleEvaluating multilocus Bayesian species delimitation for discovery of cryptic mycorrhizal diversity
dc.typeJournal Article
dcterms.source.volume26
dcterms.source.startPage74
dcterms.source.endPage84
dcterms.source.issn1754-5048
dcterms.source.titleFungal Ecology
curtin.departmentDepartment of Environment and Agriculture
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record