Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Role of fimbriae, flagella and cellulose on the attachment of Salmonella Typhimurium ATCC 14028 to plant cell wall models

    249953.PDF (2.696Mb)
    Access Status
    Open access
    Authors
    Tan, M.
    White, A.
    Rahman, S.
    Dykes, Gary
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Tan, M. and White, A. and Rahman, S. and Dykes, G. 2016. Role of fimbriae, flagella and cellulose on the attachment of Salmonella Typhimurium ATCC 14028 to plant cell wall models. PLoS One. 11 (6): 0158311.
    Source Title
    PLoS One
    DOI
    10.1371/journal.pone.0158311
    ISSN
    1932-6203
    Faculty
    Faculty of Health Sciences
    School
    School of Public Health
    URI
    http://hdl.handle.net/20.500.11937/50262
    Collection
    • Curtin Research Publications
    Abstract

    Cases of foodborne disease caused by Salmonella are frequently associated with the consumption of minimally processed produce. Bacterial cell surface components are known to be important for the attachment of bacterial pathogens to fresh produce. The role of these extracellular structures in Salmonella attachment to plant cell walls has not been investigated in detail. We investigated the role of flagella, fimbriae and cellulose on the attachment of Salmonella Typhimurium ATCC 14028 and a range of isogenic deletion mutants (ΔfliC fljB, ΔbcsA, ΔcsgA, ΔcsgA bcsA and ΔcsgD) to bacterial cellulose (BC)-based plant cell wall models [BC-Pectin (BCP), BC-Xyloglucan (BCX) and BC-Pectin-Xyloglucan (BCPX)] after growth at different temperatures (28°C and 37°C). We found that all three cell surface components were produced at 28°C but only the flagella was produced at 37°C. Flagella appeared to be most important for attachment (reduction of up to 1.5 log CFU/cm2) although both cellulose and fimbriae also aided in attachment. The csgD deletion mutant, which lacks both cellulose and fimbriae, showed significantly higher attachment as compared to wild type cells at 37°C. This may be due to the increased expression of flagella-related genes which are also indirectly regulated by the csgD gene. Our study suggests that bacterial attachment to plant cell walls is a complex process involving many factors. Although flagella, cellulose and fimbriae all aid in attachment, these structures are not the only mechanism as no strain was completely defective in its attachment.

    Related items

    Showing items related by title, author, creator and subject.

    • Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions
      Tan, M.; Moore, S.; Tabor, R.; Fegan, N.; Rahman, S.; Dykes, Gary (2016)
      Background: Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls ...
    • Sonication reduces the attachment of Salmonella Typhimurium ATCC 14028 cells to bacterial cellulose-based plant cell wall models and cut plant material
      Tan, M.; Rahman, S.; Dykes, Gary (2017)
      This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. ...
    • Pectin and xyloglucan influence the attachment of Salmonella enterica and Listeria monocytogenes to bacterial cellulose-derived plant cell wall models
      Tan, M.; Rahman, S.; Dykes, Gary (2016)
      Minimally processed fresh produce has been implicated as a major source of foodborne microbial pathogens globally. These pathogens must attach to the produce in order to be transmitted. Cut surfaces of produce that expose ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.