Electrical conductivity studies of anatase TiO2 with dominant highly reactive {0 0 1} facets
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Nanostructured powders of titanium dioxide anatase nanoplates with dominant highly reactive {0 0 1} facets were fabricated using a solvothermal method. Two kinds of samples, as prepared and calcinated at 600 °C, were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), and electrical conductivity in vacuum and in air. The dependence of the conductivity versus the inverse of temperature in the temperature range 150-440 K indicated the contribution of at least two conduction mechanisms in vacuum. The electron transport was controlled by partially depleted of charge carriers grains and adiabatic small polaron conduction in the high temperature regime and by Mott variable-range hopping (VRH) at lower temperatures. The environment was found from the experimental results to influence significantly the electrical conductivity values and its temperature dependence. A decrease with temperature in air is observed in the ranges 290-370 and 285-330 K for the as prepared and the calcinated sample respectively. Potential barriers caused by partial depletion of carriers at grain boundaries control the electrical conductivity behavior in air at high temperatures and VRH in the lower temperature regime.
Related items
Showing items related by title, author, creator and subject.
-
Qian, B.; Chen, Y.; Tade, Moses; Shao, Zongping (2014)BaCo0.6Fe0.3Sn0.1O3−δ (BCFSn631) is evaluated as an oxygen reduction electrode for intermediate-to-low temperature solid oxide fuel cells (SOFCs). XRD and HR-TEM analysis demonstrate that it is in a simple perovskite phase ...
-
Guo, Y.; Chen, D.; Shi, H.; Ran, R.; Shao, Zongping (2011)SmxSr1 − xCoO3 − δ (SSCx) materials are promising cathodes for IT-SOFCs. The influence of Sm content in SSCx (0.2 ≤ x ≤ 0.8) oxides on their oxygen nonstoichiometry, oxygen desorption, thermal expansion behavior, electrical ...
-
Pang, Wei Kong (2010)M[subscript]n[subscript]+[subscript]1AX[subscript]n (M: early transition metal, A: group-A element, X: carbon or nitrogen, n: an integer between 1-3) phases are a group of newly developed materials with the advantages of ...