Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Sea level controls on palaeochannel development within the Swan River estuary during the Late Pleistocene to Holocene

    Access Status
    Fulltext not available
    Authors
    Bufarale, G.
    O'Leary, Mick
    Stevens, A.
    Collins, L.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Bufarale, G. and O'Leary, M. and Stevens, A. and Collins, L. 2017. Sea level controls on palaeochannel development within the Swan River estuary during the Late Pleistocene to Holocene. CATENA. 153: pp. 131-142.
    Source Title
    CATENA
    DOI
    10.1016/j.catena.2017.02.008
    ISSN
    0341-8162
    School
    Department of Environment and Agriculture
    URI
    http://hdl.handle.net/20.500.11937/50430
    Collection
    • Curtin Research Publications
    Abstract

    High-resolution seismic profiles were conducted across the metropolitan area of the Swan River estuary (Perth, Western Australia) to explore the sub-surficial stratigraphic architecture, down to a depth of about 40 m below the river bed. The acoustic profiles revealed a complex system of palaeochannels where three main unconformities (R1, R2, R3) bound as many seismic units (U1, U2, U3), over the acoustic basement. Integrating these data with sediment borehole analysis, LiDAR data and available literature of the geology and stratigraphy of the area, it was possible to determine the development of these stratigraphic units, in response to Late Pleistocene and Holocene sea level fluctuations and conditioned by pre-existing topography and depositional palaeoenvironments during the last ~ 130,000 years. The deepest unit (U3) can be interpreted as the Perth Formation, which consists of interbedded sediments that were deposited in a large palaeo-valley downcutting into the underlying acoustic basement (bedrock: Tamala Limestone and Kings Park Formation), under a fluvial to estuarine setting, existing between ~ 130 and 80 ky BP (in the Last Interglacial). The middle unit (U2), composed of heterogenic fluvial (possibly lacustrine) and estuarine sediments, represents the Swan River Formation. Similarly to the Perth Formation, the formation infills channels incised in older formations and reflects the hydrogeological conditions linked with sea level fluctuation changes during the Last Glacial low stand. Holocene (last ~ 10 ky) fluvial and estuarine deposits form the shallowest unit (U1). These sediments have a highly variable internal structure, ranging from heavily layered, filling palaeochannels, to hard and chaotic, atop pre-existing topographic highs. The wave-dominated Swan River system shares several similarities with a number of estuaries worldwide, such as Burrill Lake (NSW, Australia) and Arcachon Lagoon (Aquitaine, France). This research represents the first environmental high-resolution acoustic investigation in the middle reach of the Swan River estuary.

    Related items

    Showing items related by title, author, creator and subject.

    • Assessment of the health of the Swan-Canning river system using biochemical markers of exposure of fish
      Webb, Diane (2005)
      Most environmental studies concerning the environmental health of the Swan- Canning River system have focussed on nutrient inputs from both rural and urban catchments that are the cause of algal blooms. On occasions these ...
    • Interactions between zooplankton grazers and phytoplankton as part of the energy and nutrient dynamics in the Swan River Estuary, Western Australia
      Griffin, Sandra Lenore (2003)
      Most Australian studies on estuarine plankton have examined distribution and abundance in relation to hydrological changes, primary productivity and associated nutrient dynamics. Relatively few have examined the complex ...
    • An assessment of the nutrient stripping function of two constructed wetlands in the Swan-Canning Estuary
      Majimbi, Abbey Aggrey (2007)
      The use of constructed wetlands and wet detention basins has proven to be highly effective in removing pollutants from industrial discharges and stormwater runoff throughout the world. This is attributed to design of the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.