Light intensity distribution in multi-lamp photocatalytic reactors
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
A computational fluid dynamics approach has been used to investigate the effect of lamp separation (Xlamp) on the radiation intensity distribution in a multiple-lamp photocatalytic reactor. The optical parameters (absorption and scattering coefficients) of Aeroxide® P25 titanium dioxide (TiO2) were determined by performing experiments using a single lamp system. Since the optical properties are wavelength dependent, the range of wavelength from the UV lamp was divided into 4 bands, and optical properties in each of the bands were determined by matching the experimental observations with simulated values. Simulations were then carried on multiple-lamp (2 and 4 lamps) photoreactors as a function of lamp separation and catalyst loadings. In case of 2-lamp system, the maximum local volumetric rate of energy absorption (<LVREA>) occurred at Xlamp=40mm, and it was independent of the catalyst loading. With 4 lamps however, optimum Xlamp was dependent on the catalyst loading. At low loads (up to Wcat=0.06gL-1), the optimum Xlamp was 80mm but as the catalyst concentration increased, the value of the optimum lamp separation decreased considerably, with 30mm for Wcat=0.07gL-1 and decreasing further as the concentration further increased. Because of the high absorption coefficient of the catalyst, the wall emissivity had a negligible effect on the <LVREA> for both configurations, even when the lamps were close to the wall. Finally, in both cases, the optimum lamp separation was independent of the lamp emissive power.
Related items
Showing items related by title, author, creator and subject.
-
Boyjoo, Yashveersingh; Ang, Ming; Pareek, Vishnu (2014)The hydrodynamics behaviour and radiation transport occurring inside a pilot-scale slurry photocatalytic reactor (treating real shower water) with large diameter was investigated using computational fluid dynamics (CFD). ...
-
Allpike, Bradley (2008)Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
-
Teo, S.; Taufiq-Yap, Y.; Rashid, U.; Islam, M Aminul (2015)Hydrothermal synthesis is a well-suited approach for preparing bulk metal catalysts with high purity as it is cost-effective and easy to control in terms of temperature and time. In the current study, an effective catalyst ...