Show simple item record

dc.contributor.authorKim, Du Yong
dc.contributor.authorVo, Ba Tuong
dc.contributor.authorVo, Ba-Ngu
dc.date.accessioned2017-03-15T22:27:25Z
dc.date.available2017-03-15T22:27:25Z
dc.date.created2017-03-14T06:55:57Z
dc.date.issued2017
dc.identifier.citationKim, D.Y. and Vo, B.T. and Vo, B. 2017. Multi-object particle filter revisited, in Proceedings of the International Conference on Control, Automation and Information Sciences (ICCAIS), Oct 27-29 2016, pp. 42-47. Ansan, Korea: IEEE.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/50663
dc.identifier.doi10.1109/ICCAIS.2016.7822433
dc.description.abstract

Instead of the filtering density, we are interested in the entire posterior density that describes the random set of object trajectories. So far only Markov Chain Monte Carlo (MCMC) technique have been proposed to approximate the posterior distribution of the set of trajectories. Using labeled random finite set we show how the classical multi-object particle filter (a direct generalisation of the standard particle filter to the multi-object case) can be used to recursively compute posterior distribution of the set of trajectories. The result is a generic Bayesian multi-object tracker that does not require re-computing the posterior at every time step nor running a long Markov chain, and is much more efficient than the MCMC approximations.

dc.titleMulti-object particle filter revisited
dc.typeConference Paper
dcterms.source.startPage42
dcterms.source.endPage47
dcterms.source.title2016 International Conference on Control, Automation and Information Sciences, ICCAIS 2016
dcterms.source.series2016 International Conference on Control, Automation and Information Sciences, ICCAIS 2016
dcterms.source.isbn9781509006502
curtin.departmentDepartment of Electrical and Computer Engineering
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record