Optimisation of neural network with simultaneous feature selection and network prunning using evolutionary algorithm
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Most advances on the Evolutionary Algorithm optimisation of Neural Network are on recurrent neural network using the NEAT optimisation method. For feed forward network, most of the optimisation are merely on the Weights and the bias selection which is generally known as conventional Neuroevolution. In this research work, a simultaneous feature reduction, network pruning and weight/biases selection is presented using fitness function design which penalizes selection of large feature sets. The fitness function also considers feature and the neuron reduction in the hidden layer. The results were demonstrated using two sets of data sets which are the cancer datasets and Thyroid datasets. Results showed backpropagation gradient descent error weights/biased optimisations performed slightly better at classification of the two datasets with lower misclassification rate and error. However, features and hidden neurons were reduced with the simultaneous feature/neurons switching using Genetic Algorithm. The number of features were reduced from 21 to 4 (Thyroid dataset) and 9 to 3 (cancer dataset) with only 1 hidden neuron in the processing layer for both network structures for the respective datasets. This research work will present the chromosome representation and the fitness function design.
Related items
Showing items related by title, author, creator and subject.
-
Mostafa, Fahed. (2011)Market risk refers to the potential loss that can be incurred as a result of movements inmarket factors. Capturing and measuring these factors are crucial in understanding andevaluating the risk exposure associated with ...
-
Horn, Z.; Auret, L.; McCoy, J.; Aldrich, Chris; Herbst, B. (2017)Image-based soft sensors are of interest in process industries due to their cost-effective and non-intrusive properties. Unlike most multivariate inputs, images are highly dimensional, requiring the use of feature extractors ...
-
Nguyen, Thin K. (2012)Social media allows people to participate, express opinions, mediate their own content and interact with other users. As such, sentiment information has become an integral part of social media. This thesis presents a ...