The value of continuity: Refined isogeometric analysis and fast direct solvers
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
We propose the use of highly continuous finite element spaces interconnected with low continuity hyperplanes to maximize the performance of direct solvers. Starting from a highly continuous Isogeometric Analysis (IGA) discretization, we introduce . C0-separators to reduce the interconnection between degrees of freedom in the mesh. By doing so, both the solution time and best approximation errors are simultaneously improved. We call the resulting method "refined Isogeometric Analysis (rIGA)". To illustrate the impact of the continuity reduction, we analyze the number of Floating Point Operations (FLOPs), computational times, and memory required to solve the linear system obtained by discretizing the Laplace problem with structured meshes and uniform polynomial orders. Theoretical estimates demonstrate that an optimal continuity reduction may decrease the total computational time by a factor between . p2 and . p3, with . p being the polynomial order of the discretization. Numerical results indicate that our proposed refined isogeometric analysis delivers a speed-up factor proportional to . p2. In a . 2D mesh with four million elements and . p=5, the linear system resulting from rIGA is solved 22 times faster than the one from highly continuous IGA. In a . 3D mesh with one million elements and . p=3, the linear system is solved 15 times faster for the refined than the maximum continuity isogeometric analysis.
Related items
Showing items related by title, author, creator and subject.
-
Garcia, D.; Pardo, D.; Dalcin, L.; Calo, Victor (2018)Starting from a highly continuous Isogeometric Analysis (IGA) discretization, refined Isogeometric Analysis (rIGA) introduces C 0 hyperplanes that act as separators for the direct LU factorization solver. As a result, the ...
-
Mora Paz, J.; Mantilla Gonzalez, J.; Calo, Victor (2017)A numerical method is formulated based on Finite Elements, Iso- geometric Analysis and a Multiscale technique. Isogeometric Analysis, which uses B-Splines and NURBS as basis functions, is applied to evaluate its performance. ...
-
Puzyrev, Vladimir; Deng, Quanling; Calo, Victor (2017)This paper introduces optimally-blended quadrature rules for isogeometric analysis and analyzes the numerical dispersion of the resulting discretizations. To quantify the approximation errors when we modify the inner ...