Show simple item record

dc.contributor.authorSarmiento, A.
dc.contributor.authorCôrtes, A.
dc.contributor.authorGarcia, D.
dc.contributor.authorDalcin, L.
dc.contributor.authorCollier, N.
dc.contributor.authorCalo, Victor
dc.date.accessioned2017-03-17T08:29:03Z
dc.date.available2017-03-17T08:29:03Z
dc.date.created2017-02-19T19:31:46Z
dc.date.issued2017
dc.identifier.citationSarmiento, A. and Côrtes, A. and Garcia, D. and Dalcin, L. and Collier, N. and Calo, V. 2017. PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces. Journal of Computational Science. 18: pp. 117-131.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/50904
dc.identifier.doi10.1016/j.jocs.2016.09.010
dc.description.abstract

© 2016 Elsevier B.V.We describe a high-performance solution framework for isogeometric discrete differential forms based on B-splines: PetIGA-MF. Built on top of PetIGA, an open-source library we have built and developed over the last decade, PetIGA-MF is a general multi-field discretization tool. To test the capabilities of our implementation, we solve different viscous flow problems such as Darcy, Stokes, Brinkman, and Navier–Stokes equations. Several convergence benchmarks based on manufactured solutions are presented assuring optimal convergence rates of the approximations, showing the accuracy and robustness of our solver.

dc.publisherElsevier Ltd
dc.titlePetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces
dc.typeJournal Article
dcterms.source.volume18
dcterms.source.startPage117
dcterms.source.endPage131
dcterms.source.issn1877-7503
dcterms.source.titleJournal of Computational Science
curtin.departmentDepartment of Applied Geology
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record