Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Hydrogen separation at elevated temperatures using metallic nickel hollow fiber membranes

    Access Status
    Fulltext not available
    Authors
    Wang, M.
    Song, J.
    Li, Y.
    Tan, X.
    Chu, Y.
    Liu, Shaomin
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wang, M. and Song, J. and Li, Y. and Tan, X. and Chu, Y. and Liu, S. 2017. Hydrogen separation at elevated temperatures using metallic nickel hollow fiber membranes. AIChEJournal.
    Source Title
    AIChE Journal
    DOI
    10.1002/aic.15652
    ISSN
    0001-1541
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/50930
    Collection
    • Curtin Research Publications
    Abstract

    Nickel is a cheaper metallic material compared to palladium membranes for H2 separation. In this work, metallic Ni hollow fiber membranes were fabricated by a combined phase inversion and atmospheric sintering method. The morphology and membrane thickness of the hollow fibers was tuned by varying the spinning parameters like bore liquid flow rate and air gap distance. H2 permeation through the Ni hollow fibers with N2 as the sweep gas was measured under various operating conditions. A rigorous model considering temperature profiles was developed to fit the experimental data. The results show that the hydrogen permeation flux can be well described by using the Sieverts' equation, implying that the membrane bulk diffusion is still the rate-limiting step. The hydrogen separation rate in the Ni hollow fiber module can be improved by 4-8% when switching the co-current flow to the countercurrent flow operation.

    Related items

    Showing items related by title, author, creator and subject.

    • Optimizing Oxygen Transport Through La0.6Sr0.4Co0.2Fe0.8O3-δ Hollow Fiber by Microstructure Modification and Ag/Pt Catalyst Deposition
      Han, D.; Sunarso, J.; Tan, X.; Yan, Z.; Liu, Lihong; Liu, Shaomin (2012)
      This work compares the oxygen permeation fluxes of five different La0.6Sr0.4Co0.2Fe0.8O3−δ membranes (e.g. disk, conventional hollow fiber, modified hollow fiber, Ag- or Pt-deposited hollow fiber membranes) to elucidate ...
    • Perovskite hollow fiber membranes supported in a porous and catalytically active perovskite matrix for air separation
      Hu, Y.; An, R.; Chu, Y.; Tan, X.; Sunarso, J.; Wang, Shaobin; Liu, Shaomin (2018)
      © 2017 Elsevier B.V. Mixed conducting perovskite membranes have attracted much research interest for use in air separation. However, the application of perovskite hollow fiber membranes is limited by their brittleness. ...
    • Reinforced perovskite hollow fiber membranes with stainless steel as the reactive sintering aid for oxygen separation
      Wang, B.; Song, J.; Tan, X.; Meng, B.; Liu, Jian; Liu, Shaomin (2016)
      Unlike polymeric hollow fiber membrane which has been successfully used in industrial applications, ceramic hollow fiber membrane has not been widely applied due to their brittle nature of ceramic materials. In this work, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.