Imaging Organophosphate and Pyrophosphate Sequestration on Brucite by in Situ Atomic Force Microscopy.
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
In order to evaluate the organic phosphorus (OP) and pyrophosphate (PyroP) cycle and their fate in the environment, it is critical to understand the effects of mineral interfaces on the reactivity of adsorption and precipitation of OP and PyroP. Here, in situ atomic force microscopy (AFM) is used to directly observe the kinetics of coupled dissolution-precipitation on cleaved (001) surfaces of brucite [Mg(OH)2] in the presence of phytate, glucose-6-phosphate (G6P) and pyrophosphate, respectively. AFM results show that the relative order of contribution to mineral surface adsorption and precipitation is phytate > pyrophosphate > G6P under the same solution conditions and can be quantified by the induction time of OP/PyroP-Mg nucleation in a boundary layer at the brucite-water interface. Calculations of solution speciation during brucite dissolution in the presence of phytate or pyrophosphate at acidic pH conditions show that the solutions may reach supersaturation with respect to Mg5H2Phytate.6H2O as a Mg-phytate phase or Mg2P2O7 as a Mg-pyrophosphate phase that becomes thermodynamically stable before equilibrium with brucite is reached. This is consistent with AFM dynamic observations for the new phase formations on brucite. Direct nanoscale observations of the transformation of adsorption/complexation-surface precipitation, combined with spectroscopic characterizations and species simulations may improve the mechanistic understanding of organophosphate and pyrophosphate sequestration by mineral replacement reactions through a mechanism of coupled dissolution-precipitation occurring at mineral-solution interfaces in the environment.
Related items
Showing items related by title, author, creator and subject.
-
Hoevelmann, J.; Putnis, Christine (2016)As phosphorus (P) resources are diminishing, the recovery of this essential nutrient from wastewaters becomes an increasingly interesting option. P-recovery through the controlled crystallization of struvite (MgNH4PO4·6H2O), ...
-
Hövelmann, J.; Putnis, Christine; Benning, L. (2018)© 2018 by the authors. Licensee MDPI, Basel, Switzerland. The increasing release of potentially toxic metals from industrial processes can lead to highly elevated concentrations of these metals in soil, and ground-and ...
-
Majumdar, A.; Hövelmann, J.; Vollmer, C.; Berndt, J.; Mondal, S.; Putnis, Andrew (2016)We present a detailed investigation of the micrometer-to nanometer-scale textural-chemical features in partially serpentinized dunites from the lower ultramafic unit of the Mesoarchean Nuasahi Massif, eastern India; these ...