Show simple item record

dc.contributor.authorWang, Y.
dc.contributor.authorLiu, Lishan
dc.date.accessioned2017-03-17T08:29:21Z
dc.date.available2017-03-17T08:29:21Z
dc.date.created2017-02-19T19:31:45Z
dc.date.issued2017
dc.identifier.citationWang, Y. and Liu, L. 2017. Positive solutions for a class of fractional 3-point boundary value problems at resonance. Advances in Difference Equations. 2017 (1).
dc.identifier.urihttp://hdl.handle.net/20.500.11937/50991
dc.identifier.doi10.1186/s13662-016-1062-5
dc.description.abstract

In this paper, we study the nonlocal fractional differential equation: {Dα0+u(t)+f(t,u(t))=0,0<t<1,u(0)=0,u(1)=ηu(ξ), where 1<α<2, 0<ξ<1, ηξα−1=1, Dα0+ is the standard Riemann-Liouville derivative, f:[0,1]×[0,+∞)→R is continuous. The existence and uniqueness of positive solutions are obtained by means of the fixed point index theory and iterative technique.

dc.publisherSpringerOpen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.rights.uri
dc.titlePositive solutions for a class of fractional 3-point boundary value problems at resonance
dc.typeJournal Article
dcterms.source.volume2017
dcterms.source.number1
dcterms.source.issn1687-1839
dcterms.source.titleAdvances in Difference Equations
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/