Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Petrogenesis of the Dalongkai ultramafic-mafic intrusion and its tectonic implication for the Paleotethyan evolution along the Ailaoshan tectonic zone (SW China)

    Access Status
    Fulltext not available
    Authors
    Liu, H.
    Wang, Y.
    Zi, Jianwei
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Liu, H. and Wang, Y. and Zi, J. 2016. Petrogenesis of the Dalongkai ultramafic-mafic intrusion and its tectonic implication for the Paleotethyan evolution along the Ailaoshan tectonic zone (SW China). Journal of Asian Earth Sciences.
    Source Title
    Journal of Asian Earth Sciences
    DOI
    10.1016/j.jseaes.2016.07.015
    ISSN
    1367-9120
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/51044
    Collection
    • Curtin Research Publications
    Abstract

    © 2016 Elsevier Ltd.Layered ultramafic-mafic intrusions are usually formed in an arc/back-arc or intra-plate tectonic environment, or genetically related to a mantle plume. In this paper, we report on an ultramafic-mafic intrusion, the Dalongkai intrusion in the Ailaoshan tectonic zone (SW China), whose occurrence is closely associated with arc/back-arc magmatic rocks. The Dalongkai intrusion is composed of plagioclase-lherzolite, hornblende-peridotite, lherzolite and wehrlite at the bottom, cumulate plagioclase-pyroxenite at the middle part, changing to fine-grained gabbro towards the upper part of the intrusion, forming layering structure. Zircons from the plagioclase-pyroxenites and gabbros yielded U-Pb ages of 272.1±1.7Ma and 266.4±5.8Ma, respectively. The plagioclase-pyroxenites show cumulate textures, and are characterized by high MgO (25.0-28.0wt.%; mg# =80.6-82.3), Cr (1606-2089ppm) and Ni (893-1203ppm) contents, interpreted as early cumulate phases. By contrast, the gabbros have relatively lower mg# values (56.3-62.7), and Cr (157-218ppm) and Ni (73-114ppm) concentrations, and may represent frozen liquids. The plagioclase-pyroxenites and gabbros share similar chondrite-normalized REE patterns and primitive mantle-normalized trace element profiles which are analogous to those of typical back-arc basin basalts. The eNd(t) values for both rock types range from +2.20 to +4.22. These geochemical and isotopic signatures suggest that the Dalongkai ultramafic-mafic rocks originated from a MORB-like mantle source metasomatized by subduction-related, sediment-derived fluids. Our data, together with other geological evidence, indicate that the emplacement of the Dalongkai ultramafic-mafic intrusion most likely occurred in a back-arc extensional setting associated with subduction of the Ailaoshan Paleotethyan branch ocean during the Middle Permian, thus ruling out the previously speculated linkage to the Emeishan mantle plume, or to an intra-continental rift.

    Related items

    Showing items related by title, author, creator and subject.

    • Geochemistry and petrogenesis of the Permian mafic dykes in the Panxi region, SW China
      Zi, Jianwei; Fan, W.; Wang, Y.; Peng, T.; Guo, F. (2008)
      Numerous intrusive bodies of ultramafic–mafic to felsic compositions are exposed in association with volcanic rocks in the Emeishan large igneous province (LIP), southwestern China. In this paper, we present new elemental ...
    • The Kunene anorthosite complex, Namibia, and its satellite intrusions: Geochemistry, geochronology, and economic potential
      Maier, W.; Rasmussen, Birger; Fletcher, I.; Barnes, S.; Huhma, H. (2013)
      The Kunene Complex of Namibia-Angola is one of the largest anorthosite massifs on Earth (up to 18,000 km2), consisting of several distinct anorthosite and leucotroctolite intrusions. The Namibian portion of the Kunene ...
    • Genesis of the Permian Kemozibayi sulfide-bearing mafic-ultramafic intrusion in Altay, NW China: Evidence from zircon geochronology, Hf and O isotopes and mineral chemistry
      Tang, D.; Qin, K.; Xue, S.; Mao, Y.; Evans, Noreen; Niu, Y.; Chen, J. (2017)
      © 2017 Elsevier B.V. The recently discovered Kemozibayi mafic-ultramafic intrusion and its associated magmatic Cu-Ni sulfide deposits are located at the southern margin of the Chinese Altai Mountain, Central Asian Orogenic ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.