A scalable block-preconditioning strategy for divergence-conforming B-spline discretizations of the Stokes problem
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2016 Elsevier B.V.The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity-pressure pairs for viscous incompressible flows that are at the same time. inf-sup stable and pointwise divergence-free. When applied to the discretized Stokes problem, these spaces generate a symmetric and indefinite saddle-point linear system. The iterative method of choice to solve such system is the Generalized Minimum Residual Method. This method lacks robustness, and one remedy is to use preconditioners. For linear systems of saddle-point type, a large family of preconditioners can be obtained by using a block factorization of the system. In this paper, we show how the nesting of "black-box" solvers and preconditioners can be put together in a block triangular strategy to build a scalable block preconditioner for the Stokes system discretized by divergence-conforming B-splines. Besides the known cavity flow problem, we used for benchmark flows defined on complex geometries: an eccentric annulus and hollow torus of an eccentric annular cross-section.
Related items
Showing items related by title, author, creator and subject.
-
Côrtes, A.; Coutinho, A.; Dalcin, L.; Calo, Victor (2014)The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity-pressure pairs for viscous incompressible flows that are at the same time inf-sup stable and pointwise ...
-
Puzyrev, Volodymyr; Cela, J. (2015)Practical applications of controlled-source electromagnetic (EM) modelling require solutions for multiple sources at several frequencies, thus leading to a dramatic increase of the computational cost. In this paper, we ...
-
Gao, L.; Calo, Victor (2015)In this paper, we combine the Alternating Direction Implicit (ADI) algorithm with the concept of preconditioning and apply it to linear systems discretized from the 2D steady-state diffusion equations with orthotropic ...