Mitochondrial ROS and involvement of Bcl-2 as a mitochondrial ROS regulator
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Mitochondria are the major intracellular source of reactive oxygen species (ROS). While excessive mitochondrial ROS (mitoROS) production induces cell injury and death, there is accumulating evidence that non-toxic low levels of mitoROS could serve as important signaling molecules. Therefore, maintenance of mitoROS at physiological levels is crucial for cell homeostasis as well as for survival and proliferation. This review describes the various mechanisms that keep mitoROS in check, with particular focus on the role of the onco-protein Bcl-2 in redox regulation. In addition to its canonical anti-apoptotic activity, Bcl-2 has been implicated in mitoROS regulation by its effect on mitochondrial complex IV activity, facilitating the mitochondrial incorporation of GSH and interaction with the small GTPase-Rac1 at the mitochondria. We also discuss some of the plausible mechanism(s) which allows Bcl-2 to sense and respond to the fluctuations in mitoROS.
Related items
Showing items related by title, author, creator and subject.
-
Cummins, N.; Bartlett, C.; Archer, M.; Bartlett, E.; Hemmi, J.; Harvey, A.; Dunlop, S.; Fitzgerald, Melinda (2013)Background: Traumatic injury to the central nervous system results in damage to tissue beyond the primary injury, termed secondary degeneration. Key events thought to be associated with secondary degeneration involve ...
-
Wang, Q.; Guerrero, F.; Mazur, A.; Lambrechts, K.; Buzzacott, Peter; Belhomme, M.; Theron, M. (2015)© 2014 by the American College of Sports Medicine. Purpose Excessive reactive oxygen species (ROS) is considered a consequence of hyperoxia and a major contributor to diving-derived vascular endothelial damage and ...
-
Lee, R.G.; Gao, J.; Siira, S.J.; Shearwood, A.M.; Ermer, J.A.; Hofferek, V.; Mathews, J.C.; Zheng, M.; Reid, G.E.; Rackham, Oliver ; Filipovska, Aleksandra (2020)The mitochondrial inner membrane contains a unique phospholipid known as cardiolipin (CL), which stabilises the protein complexes embedded in the membrane and supports its overall structure. Recent evidence indicates that ...