Jasmonate signalling and defence responses in the model legume medicago truncatula—a focus on responses to Fusarium wilt disease
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
School
Collection
Abstract
Jasmonate (JA)-mediated defences play important roles in host responses to pathogen attack, in particular to necrotrophic fungal pathogens that kill host cells in order to extract nutrients and live off the dead plant tissue. The root-infecting fungal pathogen Fusarium oxysporum initiates a necrotrophic growth phase towards the later stages of its lifecycle and is responsible for devastating Fusarium wilt disease on numerous legume crops worldwide. Here we describe the use of the model legume Medicago truncatula to study legume–F. oxysporum interactions and compare and contrast this against knowledge from other model pathosystems, in particular Arabidopsis thaliana–F. oxysporum interactions. We describe publically-available genomic, transcriptomic and genetic (mutant) resources developed in M. truncatula that enable dissection of host jasmonate responses and apply aspects of these herein during the M. truncatula—F. oxysporum interaction. Our initial results suggest not all components of JA-responses observed in M. truncatula are shared with Arabidopsis in response to F. oxysporum infection.
Related items
Showing items related by title, author, creator and subject.
-
Thatcher, L.; Williams, A.; Garg, G.; Buck, S.; Singh, Karam (2016)Background: Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing ...
-
Williams, A.; Sharma, M.; Thatcher, L.; Azam, S.; Hane, James; Sperschneider, J.; Kidd, B.; Anderson, J.; Ghosh, R.; Garg, G.; Lichtenzveig, J.; Kistler, H.; Shea, T.; Young, S.; Buck, S.; Kamphuis, L.; Saxena, R.; Pande, S.; Ma, L.; Varshney, R.; Singh, K. (2016)Background: Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and ...
-
Anderson, J.; Singh, Karambir (2011)Microbial pathogens inflict large losses to agriculture annually and thus mechanisms of plant resistance and how to deploy them to enhance disease resistance in crops are the foci of much research interest. We recently ...