Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion

    Access Status
    Fulltext not available
    Authors
    Lu, D.
    Zhang, T.
    Gutierrez, L.
    Ma, J.
    Croué, Jean-Philippe
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Lu, D. and Zhang, T. and Gutierrez, L. and Ma, J. and Croué, J. 2016. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion. Environmental Science and Technology. 50 (9): pp. 4668-4674.
    Source Title
    Environmental Science and Technology
    DOI
    10.1021/acs.est.5b04151
    ISSN
    0013-936X
    School
    Curtin Water Quality Research Centre
    URI
    http://hdl.handle.net/20.500.11937/51283
    Collection
    • Curtin Research Publications
    Abstract

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. A distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e., surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). Consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides is quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides toward oil droplets, consistent with the irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with the lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

    Related items

    Showing items related by title, author, creator and subject.

    • Ceramic membrane as a pretreatment for reverse osmosis: Interaction between marine organic matter and metal oxides
      Dramas, L.; Croue, Jean-Philippe (2013)
      Scaling and (bio)fouling phenomena can severely alter the performance of the reverse osmosis process during desalination of seawater. Pretreatments must be applied to efficiently remove particles, colloids, and also ...
    • Synthesis of polymeric nanocomposite membranes for aqueous and non-aqueous media
      Rajaeian, Babak (2012)
      Thin film composite (TFC) membranes have long been used by many large-scale applications (i.e., water and wastewater treatment). Recently, conventional polymeric TFC membranes are facing with short longevity due to high ...
    • Membrane fouling mechanism transition in relation to feed water composition
      Myat, D.; Mergen, M.; Zhao, O.; Stewart, M.; Orbell, J.; Merle, T.; Croue, Jean-Philippe; Gray, S. (2014)
      The impact of secondary effluent wastewater from the Eastern Treatment Plant (ETP), Melbourne, Australia, before and after ion exchange (IX) treatment and polyaluminium chlorohydrate (PACl) coagulation, on hydrophobic ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.