Benefits of sealed-curing on compressive strength of fly ash-based geopolymers
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
There is no standardized procedure for producing geopolymers; therefore, many researchers develop their own procedures for mixing and curing to achieve good workability and strength development. The curing scheme adopted is important in achieving maximum performance of resultant geopolymers. In this study, we evaluated the impact of sealed and unsealed curing on mechanical strength of geopolymers. Fly ash-based geopolymers cured in sealed and unsealed moulds clearly revealed that retention of water during curing resulted in superior strength development. The average compressive strength of sealed-cured geopolymers measured after 1 day of curing was a modest 50 MPa, while after 7 day curing the average compressive strength increased to 120~135 MPa. In the unsealed specimens the average compressive strength of geopolymers was lower; ranging from 60 to 90 MPa with a slight increase as the curing period increased. Microcracking caused by dehydration is postulated to cause the strength decrease in the unsealed cured samples. These results show that water is a crucial component for the evolution of high strength three-dimensional cross-linked networks in geopolymers.
Related items
Showing items related by title, author, creator and subject.
-
Shaikh, Faiz; Vimonsatit, Vanissorn (2014)This paper presents the compressive strength of fly-ash-based geopolymer concretes at elevated temperatures of 200, 400, 600 and 800 °C. The source material used in the geopolymer concrete in this study is low-calcium fly ...
-
Nath, Pradip; Sarker, Prabir (2015)Fly ash based geopolymer is an emerging low-emission binder for concrete. Recent studies have shown that the properties of geopolymers are similar to those of the OPC binder traditionally used for concrete. Most previous ...
-
Shaikh, Faiz; Fairchild, A.; Zammar, R. (2018)This paper compares strain hardening and deflection hardening behaviour of polyethylene (PE) fibre reinforced two types of geopolymer composites. The first composite is heat cured fly ash based geopolymer composite while ...