Near Wellbore Hydraulic Fracture Propagation from Perforations in Tight Rocks: The Roles of Fracturing Fluid Viscosity and Injection Rate
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
School
Collection
Abstract
Hydraulic fracture initiation and near wellbore propagation is governed by complex failure mechanisms, especially in cased perforated wellbores. Various parameters affect such mechanisms, including fracturing fluid viscosity and injection rate. In this study, three different fracturing fluids with viscosities ranging from 20 to 600 Pa.s were used to investigate the effects of varying fracturing fluid viscosities and fluid injection rates on the fracturing mechanisms. Hydraulic fracturing tests were conducted in cased perforated boreholes made in tight 150mm synthetic cubic samples. A true tri-axial stress cell was used to simulate real far field stress conditions. In addition, dimensional analyses were performed to correspond the results of lab experiments to field-scale operations. The results indicated that by increasing the fracturing fluid viscosity and injection rate, the fracturing energy increased, and consequently, higher fracturing pressures were observed. However, when the fracturing energy was transferred to a borehole at a faster rate, the fracture initiation angle also increased. This resulted in more curved fracture planes. Accordingly, a new parameter, called fracturing power, was introduced to relate fracture geometry to fluid viscosity and injection rate. Furthermore, it was observed that the presence of casing in the wellbore impacted the stress distribution around the casing in such a way that the fracture propagation deviated from the wellbore vicinity.
Related items
Showing items related by title, author, creator and subject.
-
Fallahzadeh, S.; James Cornwell, A.; Rasouli, V.; Hossain, Mofazzal (2015)Copyright 2015 ARMA, American Rock Mechanics Association.In this study, hydraulic fracturing tests were conducted on 150 mm synthetic cubic samples. The borehole drilled in the center of the sample was cased and perforations ...
-
Fallahzadeh Abarghooei, Syed Hassan (2015)The mechanism of initiation and propagation of hydraulic fracture from cased hole perforated wellbores is investigated through analytical, numerical and experimental studies. A new model was developed for arbitrarily ...
-
Al-Abri, Abdullah S. (2011)Perhaps no other single theme offers such potential for the petroleum industry and yet is never fully embraced as enhanced hydrocarbon recovery. Thomas et al. (2009, p. 1) concluded their review article with “it appears ...