Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5 nm without post-treatment. It is now reported that the self-assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol-1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.
Related items
Showing items related by title, author, creator and subject.
-
Quek, J.; Zhu, Y.; Roth, P.; Davis, T.; Lowe, Andrew (2013)Well-defined homopolymers of 2-vinyl-4,4-dimethylazlactone (VDA) and AB diblock copolymers of VDA with N,N-dimethylacrylamide (DMA) and N-isopropylacrylamide (NIPAM) prepared by reversible addition–fragmentation chain ...
-
Xie, Y.; Moreno, N.; Calo, Victor; Cheng, H.; Hong, P.; Sougrat, R.; Behzad, A.; Tayouo, R.; Nunes, S. (2016)For the first time, self-assembly and non-solvent induced phase separation was applied to polysulfone-based linear block copolymers, reaching mechanical stability much higher than other block copolymer membranes used in ...
-
Zhang, Y.; Wei, S.; Yong, M.; Liu, W.; Liu, Shaomin (2018)In order to save energy consumption of reverse osmosis (RO) process via partial desalination and deep cleaning of oily seawater, Y x Si 1-x O 2 -SO 3 H (YSS) particles were synthesized through co-hydrolysis, silanization ...