NDMA formation mechanism by chloramination of tertiary amines
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
Chloramination is used to reduce the formation of regulated disinfection by-products (i.e. trihalomethanes and haloacetic acids), or to avoid biofouling of membranes during wastewater reclamation processes. However, chloramination favors the formation of N-nitrosodimethylamine (NDMA), a human carcinogen. Proposed NDMA formation mechanisms used dimethylamine as a model precursor, but some anthropogenic tertiary amines presenting dimethylamine (DMA) functional groups have been demonstrated to lead to important amounts of NDMA (e.g. the pharmaceutical ranitidine). In this study, the mechanisms of NDMA formation by chloramination of tertiary amines (including model compounds presenting aromatic or heterocyclic rings, e.g. (dimethylaminomethyl)furfuryl alcohol (DFUR) or ranitidine) were studied. Compounds presenting heterocyclic rings substituted with DMA functions (e.g. DFUR, ranitidine) show much higher conversion rates to NDMA than other tertiary amines or DMA. A mechanism is proposed to explain the high yields of NDMA obtained from the decomposition of these tertiary amines during chloramination. This mechanism is based on the production of a carbocation intermediate formed from the methylated aromatic moieties present in the compounds, favouring the release of NDMA. © 2012 American Water Works Association AWWA WQTC Conference Proceedings.
Related items
Showing items related by title, author, creator and subject.
-
Le Roux, J.; Gallard, H.; Croue, Jean-Philippe (2011)Disinfection with monochloramine is known to significantly reduce the formation of regulated disinfection by-products (i.e. trihalomethanes and haloacetic acids) as compared to chlorination. Moreover, monochloramine can ...
-
Le Roux, J.; Gallard, H.; Croué, Jean-Philippe (2011)Disinfection with chloramines is often used to reduce the production of regulated disinfection by-products (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs). However, chloramination can lead to the formation ...
-
Le Roux, J.; Gallard, H.; Croué, Jean-Philippe (2012)The formation of NDMA and other DBPs (including THMs, HANs, and HKs) has been investigated by chloramination of several tertiary amines in the absence and presence of bromide ion. NDMA formation from the most reactive ...