Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Black shale formation during the Latest Danian Event and the Paleocene-Eocene Thermal Maximum in central Egypt: Two of a kind?

    Access Status
    Fulltext not available
    Authors
    Schulte, P.
    Schwark, Lorenz
    Stassen, P.
    Kouwenhoven, T.
    Bornemann, A.
    Speijer, R.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Schulte, P. and Schwark, L. and Stassen, P. and Kouwenhoven, T. and Bornemann, A. and Speijer, R. 2013. Black shale formation during the Latest Danian Event and the Paleocene-Eocene Thermal Maximum in central Egypt: Two of a kind?. Palaeogeography, Palaeoclimatology, Palaeoecology. 371: pp. 9-25.
    Source Title
    Palaeogeography, Palaeoclimatology, Palaeoecology
    DOI
    10.1016/j.palaeo.2012.11.027
    ISSN
    0031-0182
    School
    Department of Chemistry
    URI
    http://hdl.handle.net/20.500.11937/51354
    Collection
    • Curtin Research Publications
    Abstract

    The Paleocene-Eocene Thermal Maximum (PETM; ~. 55.8. Ma) is considered as the most severe of a series of transient warming events ("hyperthermals") that occurred during the Early Paleogene. However, the extent and magnitude of environmental changes during the short-lived warming events pre- and post-dating the PETM are still poorly constrained. In this study, we focus on the Latest Danian Event (LDE, ~. 61.7. Ma) and compare it to the PETM. We present high-resolution micropaleontological, geochemical, and mineralogical data of the PETM and the LDE in two adjacent sections from the Gebel Qreiya area in Egypt. There, both events are characterized by a distinct set of event beds overlying an unconformity. They are associated with intense carbonate dissolution and substantial changes in the benthic foraminifera fauna. Moreover, both show an abrupt drop of siliciclastic input (sediment starvation) correlative to the onset of black shale formation and a strong enrichment in redox-sensitive trace elements. The evidence for enhanced detrital input during the onset of the PETM and a longer recovery phase with enhanced phosphorus-sedimentation during the PETM attests a stronger environmental impact of this event compared to the LDE.According to Rock-Eval and elemental analysis, the PETM as well as the LDE event beds have up to 4. wt.% organic carbon, small amounts of volatile hydrocarbons, but high amounts of highly weathered and inert organic matter ("black carbon"). During pyrolysis, the extremely high temperatures for the maximum release of hydrocarbons of the PETM and LDE samples correspond to thermal heating of >. 170. °C, which is incompatible with the sediment burial history. Therefore, we suggest that the organic matter in both event deposits does not reflect well-preserved marine biomass but predominantly represents a mixture of heavily weathered autochthonous marine material and allochthonous combustion residues. Differences in preservation and/or type of organic matter are also likely to account for the divergent stable isotope anomalies of organic carbon: the well-known negative carbon isotope anomaly at the PETM and a positive anomaly at the LDE. Although warming, water column stratification, and enhanced nutrient input may have promoted anoxic conditions on the shelf during the LDE as well as during PETM, our results support rapid sea level rise and clastic starvation as one important mechanism for black shale formation and carbon sequestration for both events. This result underlines the similarity of both hyperthermal events in terms of environmental changes recorded on the Southern Tethyan margin, with the PETM showing an additional early phase of strong detrital input not revealed at the LDE. © 2012 Elsevier B.V.

    Related items

    Showing items related by title, author, creator and subject.

    • Assessment of the health of the Swan-Canning river system using biochemical markers of exposure of fish
      Webb, Diane (2005)
      Most environmental studies concerning the environmental health of the Swan- Canning River system have focussed on nutrient inputs from both rural and urban catchments that are the cause of algal blooms. On occasions these ...
    • Characterisation of aquatic natural organic matter by micro-scale sealed vessel pyrolysis
      Berwick, Lyndon (2009)
      The analytical capacity of MSSV pyrolysis has been used to extend the structural characterisation of aquatic natural organic matter (NOM). NOM can contribute to various potable water issues and is present in high ...
    • Molecular and isotope chronostratigraphy of tertiary source rocks and crude oils
      Eiserbeck, Christiane (2011)
      The exploration and production of petroleum from the subsurface is an important sector of industry to maintain the standards of our modern life. The availability of these natural resources has diminished in the past decades ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.