Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Computation of Standard Errors

    Access Status
    Fulltext not available
    Authors
    Dowd, B.
    Greene, William
    Norton, E.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Dowd, B. and Greene, W. and Norton, E. 2014. Computation of Standard Errors. Health Services Research. 49 (2): pp. 731-750.
    Source Title
    Health Services Research
    DOI
    10.1111/1475-6773.12122
    ISSN
    0017-9124
    School
    School of Economics and Finance
    URI
    http://hdl.handle.net/20.500.11937/51437
    Collection
    • Curtin Research Publications
    Abstract

    Objectives: We discuss the problem of computing the standard errors of functions involving estimated parameters and provide the relevant computer code for three different computational approaches using two popular computer packages. Study Design: We show how to compute the standard errors of several functions of interest: the predicted value of the dependent variable for a particular subject, and the effect of a change in an explanatory variable on the predicted value of the dependent variable for an individual subject and average effect for a sample of subjects. Empirical Application: Using a publicly available dataset, we explain three different methods of computing standard errors: the delta method, Krinsky–Robb, and bootstrapping. We provide computer code for Stata 12 and LIMDEP 10/NLOGIT 5. Conclusions: In most applications, choice of the computational method for standard errors of functions of estimated parameters is a matter of convenience. However, when computing standard errors of the sample average of functions that involve both estimated parameters and nonstochastic explanatory variables, it is important to consider the sources of variation in the function's values.

    Related items

    Showing items related by title, author, creator and subject.

    • Computational methods for solving optimal industrial process control problems
      Chai, Qinqin (2013)
      In this thesis, we develop new computational methods for three classes of dynamic optimization problems: (i) A parameter identification problem for a general nonlinear time-delay system; (ii) an optimal control problem ...
    • Computational studies of some static and dynamic optimisation problems
      Lee, Wei R. (1999)
      In this thesis we shall investigate the numerical solutions to several important practical static and dynamic optimization problems in engineering and physics. The thesis is organized as follows.In Chapter 1 a general ...
    • A study of optimization and optimal control computation : exact penalty function approach
      Yu, Changjun (2012)
      In this thesis, We propose new computational algorithms and methods for solving four classes of constrained optimization and optimal control problems. In Chapter 1, we present a brief review on optimization and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.