Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Multiproxy reconstruction of oceanographic conditions in the southern epeiric Kupferschiefer Sea (Late Permian) based on redox-sensitive trace elements, molybdenum isotopes and biomarkers

    Access Status
    Fulltext not available
    Authors
    Ruebsam, W.
    Dickson, A.
    Hoyer, E.
    Schwark, Lorenz
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ruebsam, W. and Dickson, A. and Hoyer, E. and Schwark, L. 2017. Multiproxy reconstruction of oceanographic conditions in the southern epeiric Kupferschiefer Sea (Late Permian) based on redox-sensitive trace elements, molybdenum isotopes and biomarkers. Gondwana Research. 44: pp. 205-218.
    Source Title
    Gondwana Research
    DOI
    10.1016/j.gr.2016.10.017
    ISSN
    1342-937X
    School
    Department of Chemistry
    URI
    http://hdl.handle.net/20.500.11937/51459
    Collection
    • Curtin Research Publications
    Abstract

    The key drivers controlling the redox state of seawater and sediment pore waters in low energy environments can be inferred from redox-sensitive trace elements (RSTE), molecular biomarkers and trace metal isotopes. Here, we apply a combination of these tools to the Upper Permian Kupferschiefer (T1) from the Thuringian Basin, deposited in the southern part of the semi-enclosed Kupferschiefer Sea. Enrichment patterns of the RSTEs molybdenum (Mo) and uranium (U) as well as biomarker data attest to the rapid development of euxinic conditions in basin settings during early T1 times, which became progressively less extreme during T1 deposition. The evolution of redox conditions in basinal settings, and the associated delay in the onset of euxinia at more shallow marginal sites, can be attributed to the interaction of sea-level change with basin paleogeography. Euxinia in the southern Kupferschiefer Sea did not lead to near-quantitative depletion of aqueous Mo, possibly due to short deepwater renewal times in the Thuringian Basin, low aqueous H2S concentrations, the continuous resupply of RSTE during transgression and declining burial rates of RSTEs throughout T1 times. Drawdown of RSTE is, however, indicated for euxinic lagoon environments. Moreover, admixture of freshwater supplied to these lagoons by rivers strongly impacted local seawater chemistry. The highest Mo-isotope compositions of ~ 1.70‰ in basin sediments allow a minimum Kupferschiefer Sea seawater composition of ~ 2.40‰ to be estimated. This composition is similar to the ~ 2.30‰ estimate for the Late Permian open ocean, and confirms a strong hydrographic connection between the epeiric Kupferschiefer Sea and the global ocean. The substantial variation in Mo-isotope signatures is paralleled by diagnostic shifts in biomarkers responding to oxygenation in different parts of the water column. Water column chemistry has been affected by variation in sea level, hydrodynamic restriction, riverine freshwater influx and evaporitic conditions in shallow lagoons. Elucidation of the relative role of each driving factor by a single geochemical proxy is not feasible but the complex scenario can be disentangled by a multiproxy approach.

    Related items

    Showing items related by title, author, creator and subject.

    • Biomarker distributions and stable isotopes (C, S, H) to establish palaeoenvironmental change related to the end-Permian mass extinction event
      Nabbefeld, Birgit (2009)
      Extinction, the irreversible loss of species, is perhaps the most alarming symptom of the ongoing biodiversity crisis. Some of the most significant changes in evolution throughout Earth’s history have coincided with ...
    • Evaluating the source, age, thermal history and palaeoenvironments of deposition of Australian and Western Canadian petroleum systems: compound specific stable isotopes coupled with inorganic trace elements
      Maslen, Ercin (2010)
      Petroleum geochemistry is an important scientific discipline used in the exploration and production of hydrocarbons. Petroleum geochemistry involves the applications of organic geochemistry to the study of origin, formation, ...
    • Factors controlling the abundance and carbon isotopic composition of land-plant derived compounds in crude oils.
      Murray, Andrew P. (1998)
      This thesis describes a study in petroleum geochemistry and specifically of the application of Land-plant derived hydrocarbons to elucidating source matter type, depositional environment and thermal maturity of crude oils. ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.