Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Proterozoic crustal evolution of the Eucla basement, Australia: Implications for destruction of oceanic crust during emergence of Nuna

    Access Status
    Fulltext not available
    Authors
    Kirkland, Chris
    Smithies, R.
    Spaggiari, C.
    Wingate, M.
    Quentin de Gromard, R.
    Clark, Christopher
    Gardiner, Nicholas
    Belousova, E.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kirkland, C. and Smithies, R. and Spaggiari, C. and Wingate, M. and Quentin de Gromard, R. and Clark, C. and Gardiner, N. et al. 2017. Proterozoic crustal evolution of the Eucla basement, Australia: Implications for destruction of oceanic crust during emergence of Nuna. Lithos. 278-281: pp. 427-444.
    Source Title
    Lithos
    DOI
    10.1016/j.lithos.2017.01.029
    ISSN
    0024-4937
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/51495
    Collection
    • Curtin Research Publications
    Abstract

    The crystalline basement beneath the Cretaceous to Cenozoic Bight and Eucla Basins, in Western Australia has received comparatively little attention even though it lies on the eastern margin of one of the most mineral resource endowed regions on the planet. This basement is characterized by a complex geological evolution spanning c. 2 billion years, but paucity of outcrop and younger basin cover present a daunting challenge to understand the basement geology. In this work the composition of the unexposed Proterozoic crystalline basement to the Bight and Eucla Basins is investigated through zircon Hf isotopes and whole rock geochemistry from new drillcore samples. This region includes two geophysically defined basement entities: The Madura Province, containing: 1) c. 1478 Ma Sleeper Camp Formation, which has variable isotopic signatures including evolved values interpreted to reflect reworking of rare slivers of hyperextended Archean crust, 2) 1415–1389 Ma Haig Cave Supersuite, with mantle-like isotope values interpreted as melting of subduction-modified N-MORB source, and 3) 1181–1125 Ma Moodini Supersuite, with juvenile isotopic signatures interpreted to reflect mixed mafic lower-crustal and asthenospheric melts produced at the base of thinned crust. The Coompana Province, to the east of the Madura Province, has three major magmatic components: 1) c. 1610 Ma Toolgana Supersuite, with chemical and isotopic characteristics of primitive arc rock, 2) c. 1490 Ma Undawidgi Supersuite, with juvenile isotope values consistent with extensional processes involving asthenospheric input and 3) 1192–1140 Ma Moodini Supersuite, with strong isotopic similarity to Moodini Supersuite rocks in the Madura Province. This new isotopic and geochemical data shows that the Madura and Coompana regions together represent a huge tract of predominantly juvenile material. Magma sources recognised, include; 1) depleted mantle, producing MORB-like crust at c. 1950 Ma, but also contributing to younger magmatism; 2) recycled c. 1950 Ma crust reworked in primitive arcs and in intra-plate settings and; 3) minor evolved material representing fragments of hyperextended continent. The observed isotopic evolution pattern is comparable to that of other central Australian Proterozoic provinces, including the Musgrave Province, the northern margin of the Gawler Craton, and components within the Rudall Province. Linking these isotopic signatures defines the Mirning Ocean, and its subducted and underplated equivalents. In a global context we suggest c. 1950 Ma crust production reflects the onset of ordered oceanic spreading centres, which swept juvenile crustal fragments into Nuna.

    Related items

    Showing items related by title, author, creator and subject.

    • The burning heart - The Proterozoic geology and geological evolution of the west Musgrave Region, central Australia
      Howard, H.; Smithies, R.; Kirkland, Chris; Kelsey, D.; Aitken, A.; Wingate, M.; Quentin de Gromard, R.; Spaggiari, C.; Maier, W. (2015)
      The Musgrave Province is one of the most geodynamically significant of Australia's Proterozoic orogenic belts, lying at the intersection of the continent's three cratonic elements - the West, North and South Australian ...
    • Foreign contemporaries - Unravelling disparate isotopic signatures from Mesoproterozoic Central and Western Australia
      Kirkland, Chris; Smithies, R.; Spaggiari, C. (2014)
      Extensive time constrained isotopic (Sm–Nd, Lu–Hf) datasets on samples with well-studied geological context demonstrates that the Musgrave Province of central Australia and the Albany–Fraser Orogen of south Western Australia ...
    • Isotopic insight into the Proterozoic crustal evolution of the Rudall Province, Western Australia
      Gardiner, Nicholas; Maidment, D.; Kirkland, Chris; Bodorkos, S.; Smithies, R.; Jeon, H. (2018)
      © 2018 The Authors The Proterozoic assembly of Australia involved the convergence of three main Archean cratonic entities: the North, West and South Australian Cratons, and is recorded in the Proterozoic orogenic belts ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.